EUROTHERM

e AR

SPECIFICATION OF

&

CDL

Technical Specification

© COPYRIGHT MCMXCII EUROTHERM LIMITED

All rights strictly reserved. No part of this decument may be
stored in a retrieval system, or transmitted, in any form or by
any means without prior written permission from Eurotherm

Ltd

Draft s sue R T

Contents R,
1 Scope 6
2 QOverview of CDL 7
9.1 Execution Model e e 8
2.2 An Bxample RESOUTCe L e 9
3 Lexical conventions il
3.1 Identiflers e e e 11
3.2 Keywords L 12
3.3 Literals . . . e 12
%.3.1 Numeric Literals e 12
3.3.2 Character string literals L 13
2.3.3 Time lterals L e i3
3.4 CommMents . . .« . o e e e e e e e e e e e e e e e 14
3.5 Other separators and built in operators oo 14
4 Data Types 15
4.1 Elementary data types . - Lo 15
4.2 Variables e e i5
5 Expressions 19
5.1 OPErators . -« .« o o o v o e e 19
5.1.1 Arithmetical operators © L. 20
5.1.2 Logical or bit string operators 20
5.1.3 Date and time operators 21
5.1.4 CompariSon OPEraboIs - o .« &« oo e 21
515 Indexing 21
5.1.6 Precadence o 22
59 PUNCLIONS . . o o o e e e e e 23
591 User defined funchions L 23
5.2.2 Using simple functions 24
593 Tunctions and GrFaYS« c . .o o e e e 25
524 Standard Tunctions o o e 26

P ———

CONTENTS

~I

£ Function Blocks B} R 27
6.1 Default Initial Values o e 20
6.2 WITIDE - -« o e 31
6.3 ProSrarmis L. .o e 3
Statements 33
7.1 Assignment statementso 33
7.9 TPunction and function block control statements oo 33
7.3 Selection statements L e e e 33

TAT TP SEAlementS e e e e 35
7.3.2 Case statements L .o e e e 36
7 4 Tteration SEALEMMENTS . -« © v e e e e e e e e e e e e 37
741 Forstalements o e e e e e e e e s 3
749 While statements e e e e e 3¢
7.4.3 Repeab statemnentso 3¢
T A4 Exitstatement o . e e e e e e e e e e e e e e e e 40
Sequential Function Charts 41
8.1 SEEPS . . e e 43
8.9 TranSitions . . .+« « o e e e e e e e e e e e e e 47
B3 Acbions . o . o e e e e e e e 4t
R4 SFC exeClblON -« + « o o o oo e e e e e 45
B SFC ACtIONS . .+« o o e e e e e 4y

CETEE R T

CONTENTS

9

10

11

References . 2
9.1 Specifying the Remote Data Objects oo 49

9.1.1 SImple types - . . oo e 49

G120 ATIAYS © o e e e 50

G.1.3 Tunchion Blocks o . . L e G

G 14 SeFVICES . . . e e 53
9.2 Reading the Remote Informationo 53
9.3 Reading Remote Data Hd
9.4 Writing Remote Data 54
9.5 Reference Time SLAMD . . .« o o o L o o oo 55
0.6 References to RefErences o o o oo 55

9.6.1 Adjustment of scan rateso 56
9.7 Examining the state of a referenceo 57
9.8 Timeouts and fallUTes o o e e e e 57
9.9 Summary of Properties 58
9.10 Addressability and Write Protectiono oo 58
Resources 39
10.1 Tasks and task execution model L Lo e 61
10.2 Remote BIockS . .« o o o v e e e e e e e e e e e e e 61
Services 61
111 Service Geclaration o o e e e e e e e e 62
11.2 Service INVOCALION .« o o v o o o e e e e e e 53
11.3 Service execubion . . . v o v o o i e e e 64

1131 Immediabe SEIVICES . .« « .« o o vt e e e e e e 64

11.2.2 Rendezvous SBIVICES o o o 0t e e e e e e e e 65
14 Service BIIMEOULS . . o o o o o o e e e e e e e 88
115 Services with SFC bodies 68
Attributes 69
121 Atbribute definition . . . o o . . e 70

122 Attribubes ab tun BIIIE . . .« o o o o e e e e e e 71

CONTENTS

13 Configuration S 72

14 Deviations from IEC-1131 72

VERSION HISTORY

E Version Date Changes
] Draft | July 24, 1692 i

TR

SCoPE

1 Scope

This document describes Configuration Description Language, CDL, a language for configuring real-time dis-
tributed control systems based on the IEC standard for programmable controller, IEC 1131

CDL is a textual language based on IEC 1131-3 Structured Text with extensions defined by Eurotherm which
incorporate previous Eurotherm Group experience of requirements of distributed control systems.

The IEC standard identifies a set of Janguages which include two graphical languages, Sequential Function
Charts and Function Block Diagrams. These map onte and can be mixed with Structured Text. Hence
DL can be used in a mixed-mode graphical and textual programming system, and can be thought of as the
canonical form that describes the meaning of the graphical languages.

This document describes CDL, identifies where the language extends the IEC standard and also features of
the IEC standard that are currently not supported.

Products that conform to CDL should not introduce any features that are supersets of what is described in this
document. Products should provide a document identifying any CDL features not supported, or supported
with restrictions.

This document actually reflects the status of the current Eurotherm Coontrol Limited’s implementation of CDL.
It is known that

e The current implementation in some respects does not conform to the 1EC standard (or even to Jevels of
conformance of the IEC standard)

e The current implementation does not fully meet the requirements of other group companies (for exampie
EPA’s implementation of SFC).

On the other hand it would be impossible to write a document that did meet all the above requirernents since
the IEC standard is still changing, and the requirements of the group companies are not yet fully known. So
at least this document describes a known implementation.

It is intended that in the fullness of time CDL will be extended so that

e An exact level of conformance to IEC is specified.
e The extensions to 1EC are clearly stated, as required by the 1EC standard.

¢ The requirements of other group companies are incorporated.

This document also describes an execution model for CDL. It 1s not intended that every product that conforms
to ODL should conform exactly to the execution model. There should, however, be a clear staternent of the
mapping between CDL and the product.

It is also anticipated that many products will only support a subset of CDL, for example

s Only a fixed set of blocks may be supported

e Only Resource level configuration may be supported

Section 14 summarises the current differences between CDL and IEC 1131-3.

OvERVIEW oF CDL

2 Overview of CDL

The top level object in CDL is a Configuration. This defines a network topology. 1t is specifies which nodes
certain Resources are going to run on.

The next level obiect is the Resource. Typically there is one Resource per node.

Under a Resource are Resource Level Objects. Most of these are Resource Level Blocks which may be either
Funciion Blocks, Programs, or (in ihe fulure) Services. Funetion Blocks, Programs and Services are together
simply called Blocks and a Resource Level Block is a Block declared at the top level in the Resource. A
Resource may also contain data holders which are CDL variables, such as structures, enumeratlons, arrays or
base types (INT, REAL, etc.). Note thal today the only velid Resource Level Objects are Task, Programs and
Functron Blocks

A Block consists of data and an executable algorithm which may represent a continuous controi strategy, a
sequencing strategy, a display strategy, or the like. Kach Block may have input values and output values. A
Block can be thought of as a software IC with its input and cutput vahues being equivalent of the pins of the
IC. Inputs and outputs of Resource Level Blocks may be ‘wired’ to other Resource Level Blocks in the same
way as chips in a printed circuit board are wired together.

The execution of Resource Level Blocks is controlled by special Resource Level Objects called Tasks. These
are real time tasks which can be executed at a regular interval or on an event. A Task is associated with a set
of Resource Level Blocks that it controls. The Task executes each of the Resource Level Blocks that it controls
in turn when it is time for the Task to run. It is important to understand that the algortthm in blocks 1s run
each time the controlling Task runs. So any CDL fragment may be executed many many times without any
looping constructs being required.

Resource Level Blocks are (like ICs) themselves hierarchic. They can be made up out of a set of smnaller Blocks
that are also wired together, inside the top level Resource Level Block. Blocks inside a Resource Level Block
must be Function Blocks or Services (i.e Programs can only be instantiated at the resource level).

Inter Resource communication is achieved by the Reference mechanism. A Reference is a Block that provides
a template for mapping onto other objects, either on the same Resource or on another remote Resource. The
mapped objects may be any arbitrary collection provided that they all are executed by the same Task. The
Reference can be changed at run time (from within CDL) to map onto another set of objects. Type checking
for the mapping is performed (once only) at run time. References can be used to set up scanning (i.e wiring)-
or to single shot read or write data to unwired Block parameters.

A Block type in CDL is an algorithm with some associated data. Some of the data is provided as inputs, scmse
available as outputs, and some is internal to hold the state of the Block. The data represents the instantiation
of the Block; a Block type can be used many times in any Resource with different data just as a type of chip
can exist many times on a PCB.

CDL contains traditional language constructs such as looping constructs and conditional statements, witk
Block execution in between. CDL also has a set of built in types (Reals, Integers, Strings, Times and so on
and allows user definable Blocks. CDL is strongly typed; it is illegal to connect or assign conilicting types
together. CDL has a set of built in Functions (e.g add, multiply} and allows user definable Functions. (A
Function is an algorithm with no state giving one output value i.e given the same input values the same outpm
value is always returned.)

CDL also aliows specification of Sequential Function Charts which divide Block execution into a series of Step:
with associated Actions. When a Step is active its associated Actions are executed. These Actions are expressec
as CDL statements i.e they can be a set of wired Function Blocks that will be executed or another Sequence
Flow Chart or some looping and conditional statements. Actions may be executed continuously (i.e all the
time the step is active), or only once (when the step becomes active), or various other timed combinations.

Steps have Transilions between them, which are Boolean expressions that must evaluate to true in order for
the transition to be made. When a transition is made the currently active Step is deactivated and the nex

Overview oF CDL

Step is wade active. There can be a transition to a set of parallel steps which are all activated.togethar.or
there can be a rendezvous between a set of parallel steps into one step.

As previously said, every Block has an execution algorithm associated with it. Blocks can also have other
alzorithms associated with them. These are known as Services. Services are used to provide and receive data
from Blocks without explicit wiring, and are useful when there is a need to abstract a set of operations on a
Block, and when there is a many to many relationship between Blocks.

Services can be invoked using the Reference mechanism to set up a local image of the rernote Service. Service
invocations can be accepted either asynchronously to Block execution or at an appropriate user defined moment
during Block execution. The former are known as ‘method’ Services, the latter as ‘rendezvous’ Services,

Azy ODL object has associated with it a set of Aliribuies. Attributes are static characteristics of CDL objects
such as engineering units, version numbers and so on.

In summary,

« CDL is a language for distributed applications. The Reference mechanism hides from an application
whether the referenced objects are on the local node or on another node; there is no inter-node com-
mumnication visible at the CDL programming interface, only References to external Blocks {including
Services).

e Each Resource contains a set of Blocks which are simply wired together. The Blocks themselves execute
under the control of Tasks. The algorithms inside a Block can be expressed in CDL statements which
encompass block wiring and sequencing. A Block forms a reusable type; Blocks can contain other Blocks
and are therefore hierarchic.

« CDL is based on the IEC 1131-3 Structured Text language. CDL extends IEC 1131-3 which does not
have References, Services, or Attributes.

2.1 Execution Model

CDL is a deterministic real time language!. Tasks are executed either at a regular interval, or on an event.
Any Task executed at a regular interval must compiete before the next execution is due, otherwise an overrun
condition is signalled on a Task Block output variable. The values seen by a data receiving Task in any inter
task communication is a coherent set from the same cycle of the data providing Task. Whether inter task
communication requires inter node communication is invisible to the application. The execution model can be
described as follows.

Tasks are pre-emptable real time tasks. Each Task runs according to its associated priority either on a single
shot basis when it is triggered, or (the normal case} at a periodic interval. During its execution a Task executes
each of its Resource Level Blocks (RLBs) in turn. Input wiring to an RLB 1s evaluated just before the RLB is
executed. In between execution of an RLB it deals with any read, write or Service requests.

It is entirely possible for a product to use CDL to describe applications, but to have a different non-IEC execution model.

et ey

Overview or CDL

2.2 An Example Resource

Textual (CDL) representation :-

{*

* The Regsource Definition

RESOQURCE R ON ZXXX

(% declare two tasks and their intervals)

TASK T { INTERVAL := t#ls);
THSK T2 { INTERVAL := t#3s);
(* instantiate a program block *)

PROGRAM Fbl WITH Ti : FbTyped {In ::= Fb2.0ut);

{% instantiate a function block #)

FUNCTION _BLOCK Fb2 WITH T2 : Fblyped (In :

= Fbi.0ut, Ini

{* declare a remote block on another remote resource Ri.
The block’s update rate is controlled by task T2. *)

AEFERENCE Fb3 WITH T2: FBTypeB { ref
END_RESOURCE

(*
* The Function Block TYPE Definitions

FUNCTION_BLOCK FoTypeAd
VAR_INPUT
In, Inl : INT;
END_VAR
VAR _OUTPUT
Out : INT;
END_VAR
VAR
B,C : FbTypeB;
END_VAR
{(* algorithm of block
*)
END_FUNCTION_BLOCK
FUNCTION_BLOCK FbTypeB
VAR_QUTPYT
I : INT;
END_VAR

{* algorithm of block

*)...

'REFB3Y ¥

s:= Fb3.0ut};

OverviEW oF CDL

END_FURCTION_BLOCK

Graphically this can be represented as in fig 1.

Resource R
Task : T1 Task : T2

I_ “““““““““ :" “““““““““““““““““““““““““““““ H

* v a i

i Fbl : FbTypeA Fb2 : FoTypeA ;

'-> In Out -~ In Out +--
T Inl
N — T) P

B : FbTypeB : B : FbTypeB Fb3 : FbTypeB
: Out s
A N R K I SOUOPOPPRRNE '
1 H
i]
1 1
C : FbTypeB : C : FbTypeB :

: \
] H
1 ¥
| k
f e e n e e e b e e = w mm 1

Figure 1: Example Resource

caample _msource, IPH, WRIBOO

LEXICAL CONVENTIONS

2 Lexical conventions

CDL description is divided for processing (i.e translation for loading into a run-time control system) into a
sequence of tokens. There are five kinds of tokens, identifiers, literals, operators, keywords and other separators.

Blanks or “white space” (tabs, newlines, formfeeds and comments) are ignored except that they serve to
separate tokens.

(DL uses the printable ascii character set for its literals, keywords, identifiers, operators and separators.

3.1 Identifiers

An identifier is string of letters, digits and underline characters that begins with an underscore or a letter.
Underline characters and case are significant, L.e “ABCD” and “AB.CD” and “abed” are different identifiers.
Multiple leading or embedded underlines are not allowed. Identifiers cannot contain white space.

There are some restrictions on length of identifiers.

Input, in_out and output VARs of function blocks should be no more than 12 characters long and may not
start with underscores. Internal function block parameters (1.e not input, output or in.out) may be more than
12 characters long, but if so the name is truncated to 12 characters as far as access to the data using the
Reference mechanism (section 9) is concerned. Function block type names may be up to 20 characters long.
Function block instance names are of course VARs of another block (or program) and so have the same limit
as internal VARs.

TR

Laxical CONVENTIONS

Table 1: CDL Keywords —
ACTION ACCEPTY AND ARRAY
BOOL ' BY BYTE CASE
DATE DATE_AND TIME DIM¥ DINT
bo DWORD EDGE{L ELSE
ELSIF END_ACTION END.CASE END.FOR
END_FUNCTION.BLOCK END.FUNCTION END.F END_PROGRAM
END REPEAT END.RESOURCE FEND.SERVICEf END.STEP
END_TRANSITION END_VAR END.WHILE EXIT
FOR FROM FUNCTION FUNCTION.BLOCK
IF INITIALSTEP INT LINT
LREAL MOD MULTIPLY NON_ST.BODY{
NOT NO_BODYY NQOINPUTS § NO_OQUTPUTSY
OF ON ORr PROGRAM
QTIME} REAL REFERENCE} REPEAT
RESCURCE RETAIN RETURN ROWH
SCREENT SERVICE? SINT STEP
STRING TABLE} TASK THEN
TIME TIME.OF_DAY TO TRANSITION
UDINT UINT UNTIL USINT
VAR VARINPUT VAR_IN_QUT VAR.QUTPUT
WHEN WHILE WITH WORD

XOR
+These keywords are not defined in JIEC DIS 1131-3
{EDGE has been replaced by rising and falling edge in IEC, it will be repiaced in CDL.

3.2 Keywords

Keywords are unique combinations of characters of the same form as identifiers. Keywords are all in upper
case. Keywords are shown in table 1.

3.3 Literals
3.3.1 Numeric Literals

There are two classes of numeric literals, integer literals or real literals.

Integer literals may be specified in conventional decimal notation. Integer literals may also be represented in
base 2. The base is in decimal notation. The base is followed by a ‘# sign and the the digits giving the value
of the number. The digits must be in groups of four, separated by underscores, e.g 2#0009 2#0010_0001.

Real literals are distinguished by the presence of a decimal point. An exponent signifies an integer power of ten
{specified in decimal notation) by which the preceding number is multiplied to obtain the value represented.
An exponent is indicated by the letter E or e followed by a + or — sign and then the integer exponent value.

Integer and real literals and exponents may be preceded by a + or — sign.

Boolean data can be represented by 0 for false, and 1 for true, as well as the pre-declared constant identifiers

FALSE (value 0) and TRUE (value 1).

Base 2 notation may only be used when assigning or comparing bit string types.

LEXICAL CONVENTIONS

Table 2: Examples of numeric literals

Integer literals | -12 0 1 40967 +3000

Real literals 1200, 10.1 .31 1.e-12 1.0E-412 11E-+12
Base 2 literals 2411110000 240000

Boolean literals | 0} TRUE FALSE

Table 3: Examples of character string literals

"2 string’ | A character string of length 8
e The empty, zero length, character string
P A string containing the space character

rg A string of length one containing the sin-
gle quote character

'$0D$04° A string of length two containing CR and
LF

*$%1.0° The string that prints as $1.0

"L’ or '§1' | A string containing one line feed charac-
ter, LF

4P or '$p’ | A string containing one form feed
character

'$§* or '$n’ | A string containing one new line character
'$R’ or '$r’ | A string contalning one carriage return
character

'$T? or *$t* | A string containing one tab character

3.3.2 Character string literals

A character string literal is a sequence of zero or more characters prefixed and terminated by the single
quote character ’. In character strings three character combinations of § followed by two hexadecimal digits
(in upper-case) are hexadecimal representations of the eight bit character code. Additionally two character
combinations which begin with the dollar sign have a special meaning as shown in table 3.

String literals in CDL have a maximum length of 255.

3.3.3 Time literals

There are two sorts of time literals, those that represent an elapsed time or a duration, and those that represems
an absolute time, i.e a date and time of day combination.

Duration literals

Millisecond resolution durations These are delimited on the left by the sequence of characters T# and
t#. (TIME# or time# may also be used in IEC 1131-3, CDL currently does not support this).

The duration data is a sequence of numeric literals and duration units which are days (denoted by ‘d’), hours
{denoted by ‘b’ or 'II’), minutes (denoted by ‘m’or "M’), seconds {denoted ‘s’ or 5’)and milliseconds {denoted
‘ms’, or "MS’), or any combination of these in sequence. (In IEC 1131-3 the least significant time unit may be
give in real notation, with no exponent; CDL currently does not support this.} Examples are give in table 4.

P

LEXICAL CONVENTIONS

Table 4: Time literal formats : .

t# format duration literals t#14ms TH#14.7ms t#25h10mlsims t#5d13h t#25h1m

QT+# format duration literals QT 1slms QT#10s1.2ms QT#100s

Date literals D#£1989-06-25 DATE#2000-10-25
Time of day literals TIME_OF_DAY#15:38:33 TOD#12:20:11
i Date and time hterals DTH#2000-10-25-10:11:12 DATE AND. TIME#1889-06-25-12:20:11 H

Table 5: Prefixes for time of day and date literals

Date literals DATEH or Dt
Time of day lterals TIME.QF_DAY # or TOD#
Date and time literals | DATE_AND_TIME# or DT

Overflow in the most significant unit of a duration literal is permitted.

(In IEC 1131-3 single underscores may be used to separate units of duration, CDL currently does not support
this.)

In CDL the maximum duration that may be represented is 932 milliseconds, (about 49.7 days).

Microsecond resclution durations Certain products require a time accuracy of microseconds. CDL
specifies another literal format for these, which allows 932 microseconds to be specified. The format is like
duration literals, except that the sequence of time durations starts with “QT#”, and is specified in seconds
and milli seconds only; real format with no exponent and up to 3 digits after the decimal point may be used
for the milli-second part. For example QT#1.3ns is 13004 s, QT#1s2.003ms is 1002003us, and QT#2.12us is
2120pus.

Time of day and date literals There are three sorts of absolute time literals, “time of day”, “date and
time” and “date”. The prefixes for these are shown in tahle 5. Some examples are shown in table 4. Date 1s
in the format ‘year-month-day’, where year is the four digit year, month the two digit month number, and day
the two digit day of the month. Time of day is in the format ‘hour-minnte:second’. Date and time literals are
of the format ‘<date and time literal>-<time of day literal>’.

3.4 Comments

Comments are delimited at the beginning by the character sequence (*, and at the end by *). Comments
are allowed anywhere in CDL except within character string literals defined in section 3.3.2. Comments are
treated as white space (see section 3). Comments may not be nested.

3.5 Other separators and built in operators

Other separators and the buiit in operators that make up the lexical structure of CDL are shown in table 6.

DaTs TyYPES

4 Data Types

4.1 Elementary data types

Table 6: CDL separators and operators

o hed pep e

Lk e

Separate array bounds declarations
Hierarchic name separator
Statermnent delimiter

Type deciarations

Assignment cperator

Comparnson operator

Comparison operator

Comparison operator

Comparison operator

Comparison operator

Comparison operator

Add operator

Subtract operator, unary minus
Multiply operator

Divide operator

Power operator

Start of parameter lists

End of parameter lists

Array indexing, bounds specification
Array indexing, bounds specification
General list delimiter

Access properties

wiring operator

Delimit attribute assignment
Delimit atéribute assignment

Table 7 shows the supported elementary data types.

4,2 Variables

A variable is a named place holder for a data type. Different values of the same data type may be assigned
to a variable. Identifiers are used for the symbolic representation of variables. Variables are assigned values

using assignment statements. Assignments are denoted using a

:=. The left hand side of the assignment is the

variable being assigned to, the right hand side an expression {see section 5), which in the simplest case is 2
literal value, or another variable. The types of the left hand and right hand side of assignments must match

An example of an assignment of 2 literal value to a variable called “A” of type DINT is —

A = 10,

An example of an assignment between two variables, “C” and “B”, of the same type is —

C := B;

T T

Data TYPES

et gt

Table 7: Elementary data types

BOOL true or false boolean Il
SINT Bight bit signed integer

INT 16 bit signed integer

DINT 32 bit signed integer

USINT 8 bit unsigned integer

UINT 16 bit unsigned integer

UDINT 32 bit signed integer

REAL single precision (32 bit) floating point
LREAL double precision (85 bit) ficating point
TIME Duration, 32 bit milliseconds

QTIME Duration, 32 bit microseconds

TIME_CF.DAY or TOD Time of day
DATE_AND.TIME or DT | Date and time of dayy

DATE Datef

STRING Variable length (255 max) string
BYTE 8 bit bit string

WORD 16 bit bit string

DWORD 32 bit bit string

ROW i

TABLE i

+The range of this is 00:00 1/1/1970 ta 2°% seconds later.
#These data types are used to provide an interface to relational databases. Within the CDL context variables of this
type may only be assigned to variables of the same type or manipulated by functions.

A variable may also represent an array of data values, of up to 6 dimensions (5 in the case of STRINGs).
On start up variabies may be initialized to a system default value or a user specified initial value.

Variables are declared and used in Program Organisalion Unats, which are functions (5.2), function blocks and
programs (6), and services (11).

Variables are declared in the declaration section of Program Organisation Units. Variables have a mode, which
defines whether it can be read or written outside and inside the Program Organisation Unit it is declared in.
The mode is specified in the declarations section of the Program Organisation Unit and can be —

VAR_INPUT The variable is an input to the Program Organisation Unit and may only be read within it,
and only written outside 1t.

VAR_OUTPUT The variable is an output from the Program Organisation Unit and may be read and written
within it but only read outside it.

VAR_IN_QUT The variable is an input-output to the Program Organisation Unit and may be read and
written within it and outside it.

VAR. The variable is internal to the Program Organisation Urit, and may only be read and written within 1t
The scope of the name of a variable is local to the Program Organisation Unit the variable 1s declared in,
except by explicit parameter passing via variables that have been declared as input or outpués or in-outs.

A simple declaration of a DINT variable is

VAR

adint: DINT;
END_VAR

s

DaTta TyPES

A list of names may be used as in

VAR
{#% 3 strings that can contain 80 characters *)
stringl, string2, string3: STRING(80);

{+ Default string size of 255 characters *)
string255: STRING;
dinti, dint2, dint3 : DINT;

END_VAR

This example also shows declaration of an optional string size, in this case 80 bytes, which is the maximum
number of characters the string will take. If this is omitted string size has a default of 255 {the maximum
allowed in CDL}.

Variables may be initialised by an expression, which is known as a cold start value,

adinti: DINT := 10: {* custom initialisation %}
adint2, adint3 : DINT := ~i; (* adint2 and adint3 both initialised to =1 *)

If variables have no explicit cold start value, they are initialised to a defauit value. The default values of ali
numeric (integer or floating point types) is zero. For duration the default value is 0 seconds. For time and dat<
and time types the default value is 00:00 a.m lst January 1670. For all bit string types the default value is 0.

CDL allows expressions as well as constants to be used as cold start values. (This allows cold start values
to be passed down through hierarchies of blocks, see 6). Expressions (see section 5) may refer to variables ir
previously declared declaration sections as in

VAR_INPUT
stringi: STRING;
END_VAR
VAR
string2: STRING := stringl;
END_VAR

string2 is initialised to the same value as stringl. Since stringl can be initialised from outside the block
(see 6) a cold start value can effectively be passed to string2 from outside the block.

DL allows arrays of variable to be declared. For example

VAR_INPUT
arrayi: ARRAY [1 .. 10] OF DINT;
END_VAR

declares a single dimensional array of 10 DINTs. The left bound of the array must be less than the righ:
bound, and both must be >= 0.

VAR_INPUT
array2: ARRAY £ 5 .. 10, 1 .. 20 1 OF DIXT;
END_VAR

e e

Data Tyrus

declares a two dimensional array of 100 DINTs. Up to 6 dimensional arrays are supparted,-except for_agzays
of strings, for which only 5 dimenstons are allowed. Arrays may be initialised using comma separated lists of
initialisation values. The rightmost subscript of the array varies most rapidly. For example

VAR_INPUT
array3: ARRAY [1 .. 2, 1 .. 3, 1 .. 3] OF DINT :=
{,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;
END_VAR

initialises the three dimensional array; because the rightmost subscript of the array varies most rapidly, element
[1,1,17 has value 1, [1,1,2] value two, and so on, [2,3,3] has value 18,

Parentheses can be used to repeat values in array initialisation, so for exampie

VAR_INPUT
array4: ARRAY [& .. 10] OF DINT :=
8(1,2), 3(30), 1;

E¥D_VAR

gives elements (11,31, [6] of array4 the value 1, (21,047,087 of array4 the value 2, elements {71, [a], 9]
the value 30, and element [10] the value 1.

CDL allows expressions to appear in array initialisation lists, for example

VAR_INPUT
IN : DINT;

END_VAR

VAR
array5: ARRAY [1 .. 4] OF DINT :=
IN, IN + 1, IN + 2, IN + 3;

END_VAR

initialises the array to a set of values dependent on the initial value of the input parameter. Since IN can be
initialised from outside the block (see 6) a cold start value can effectively be passed to arrayS from outstde
the block.

It is an error to specify too many or too few values to an array initialisation.
String arrays are allowed — for example
VAR

strarr: ARRAY [1 .. 3, 1 .. 2 1 CF STRING{20) :=
3(’stri’,str2’);

initialises a two dimensional array of strings each of maximum length 20 so that elements [1,1]), £2,1], and
[2,1] have value strt and 1,21, [2,2], and [3,2] have value str2.

(‘DL allows array to array assignment provided the overall sizes of the arrays match. That is if the arrays are
mapped into a one-dimensional array, the number of elements must match. For example —

[rape

EXPRESSIONS

VAR
darri: ARRAY [t .. 2, 1 .. 2] OF DWORD;
darr?: ARRAY [1 .. 6 1 OF DWCRD;
darr3: ARRAY [1 .. 2, 1 .. 3] OF DWORD;

et g

END_VAR
darri := darri;
darr? := darri;
darr3 := darril;

Assignment is done in the same way as in array initialisation; the right hand subscript of arrays is varied the
fastest (on bath sides of the assignment, and corresponding array elements assigned to each other. So the
statement darr2 := darrl; is equivalent to

darr2[1] := darrifi,il;
darr2[2) = darri(t,2];
darr2[3] := darril[z,1];
darr2[4] := darr1{2,2];
darr2[5} := darri[3,1];
darr2f6] := darril3,2];

In string assignment if the destination string is too small the assigned string is truncated to fit. For example

VAR

string: STRING(4);
END_VAR

string := ’12345677;

results in string containing 1234.

5 Expressions

An expression is a sequence of operators and functions (e.g add, subtract) and operands (either literals or
variables) that specifies a computation; aa expression always results in a value.

Expressions are strictly type checked. There are sirict rules regarding the types and mixing of types allowed
as operands; in general the same type must be specified for each operand. Type conversion functions must be
used if type mixing is desired.

5.1 Operators

Operators are an infix shorthand notation for functions. For example
X = 10

means

MULTIPLY(INit := X, IN2 := 10)

This section describes operators that are built into CDL. 2

2Note that the associated function name is not necessarily built inte CDL; it is provided in descriptions below to ax
understanding

EXPRESSIONS

5.1.1 —Arithmetical operators e

The following arithmetic operators are supported:

Function Operator Example Value
ADD + X:=20+4 24
SUBTRACT - X =X-10 14
MULTIPLY * X:=3%5 15
DIV / X=X/2 7
MODULUS MOoD X =3MCD2 1
EXPT ** Y o=40%3 840
MINUS - Y= Y -64.0

These operators may be used on any of the numeric types (i.e the integer types, or the floating point types).

Add, subtract, multiply and divide must all operate on two arguments of exactly the same CDL type, so it
is illegal to add an INT to a SINT say. Integer literals may be used together with any of the integer types,
floating point literals may be used with BREAL or LREAL types. [nteger division truncates its result as shown
in the example in the table.

Modulus may only be used with integer types.

Expt (power) must be used with the variable or number having its power taken being a float (REAL or
LREAL}, and the actual power being any numeric value.

The + operator may also be used to concatenate strings. For example

'Hello ! + ’Worid’

is equivalent to

'Hello World'

5.1.2 Logical or bit string operators

The following bit string operators are supported:

Function Operator Example Value

XOR XOR X := 24£1010 XOR 240010 2461000
OR OR ¥ = 240001 OR 241000 241001
AND AND X := 240001 AND 241100 240000
NOT NOT X = NOT 240101 2441410

All these operators must have operands of the same type, and the operands must be bit strings types {BYTE,
WORD, DWORD) or booleans (BOOL) or bit string literals.

I et

EXPRESSIONS

5:1.3 Date and time operators B

Standard arithmetic operators are available for use with date and time types as shown in the table below.

Operator Operand type Operand type Result type
-+ TIME TIME TIME
TIME.OF_DAY TIME TIME.OF DAY
DATEAND.TIME TIME DATE_AND TIME
- TIME TIME TIME
DATE DATE TIME
TIME.OF DAY TIME TIME OF_DAY
TIME_OF_DAY TIME. OF.DAY TIME
DATE_AND.TIME TIME DATE_AND.TIME
DATE_AND.TIME DATEAND_TIME TIME
* TIME Any integer or float TIME
TIME Any integer or float TIME

For the — operator the table above shows the left-hand operand type on the left. It is not possible, for example.

to subtract a “time of day” from a “time”.

5.1.4 Comparison operators

The result type of any comparison is BOOL. Both operands must be of the same type.
The foliowing comparison functions are supported:

Function Operator Example Value

GT > 1>2 0
GE = 2>=1 i
EQ = i=1 1
LE <= 1<=13 1
LT < 1<3 1
NE <> 2 <> 3 i

The operands may be of any type, except for STRING where caly = and <> are supported.

5.1.5 Indexing

Flements of an array are accessible by using an index expression. Index expressions must be of integer type.

For example, within an expressiqn,
al10]

yields the value of element 10 of array a, as does
als - 3 + 8]

and, if variable z has value 11, so does

alz - 1]

[repr

FXPRESSIONS

The indexed variable

»{5,10]

vields the value of element [5,10] of array b. I muiti-dimensicnal arrays are considered as being layed out a
linear single dimension array then (as in array initialisation, section 4.2}, the right most subscript varies most
quickly. So if b above had been declared as

b . ARRAY [1 .. 10, 1 .. 101 OF BYTE

element [5,1] would map onto absolute element 40 (where the first element is elemnent 0).

Indexed expressions may either be fully indexed, so that one element is specified, or partially indexed so that
a slice is specified. For example given the above declaration of b, b{1,1] is fully indexed, whereas bi1l is a
Slice of 10 elements. It is an error to specify too many indices. Slices may be used in assignments or with array
functions (see page 18).

51.6 Precedence

Expressions may be bracketed to determine the order of evaluation. For example

((5%4)/10) + { 3-(20/4)) =0

Otherwise order of evaluation is determined by precedence. For example the operator — has lower precedence
that the operator = so 5+ 4 — 4 means (5+4) - 4.

Operators have the following precedence, (highest to lowest).

functions and parenthesised expressions
POWER operator **

unary operator NOT, and unary minus —
DIVIDE /, multiply *, modulus MOD
ADD + and SUBTRACT -

comparison <>=<=>=<>

AND

XOR

OR

Otherwise precedence is by grouping left to right 1.e 1+ 4/10 is equivalent to (1 +4)/10.

EXPRESSIONS

5.2 Functions . o

S

A function is a program organisation unil which when executed yields exactly one value. A function call may
be used in any expression; the type of the function call is the type of the value it returns.

Functions have a set of input parameters, which must be assigned values before the function is invoked to yield
its value.

Functions are stateless. The value that a function returns is always a function of its input parameter values,
and always the same for the same set of input values.

DL requires that function parameters are given values by name, not by the position in the text {unlike many
computer languages}. For example

¥ .= ADD(IN1 := 10.1 , IN2Z := sUB(I¥i{ := 5.1, INZ := 1)
is (assuming ADD and SUB are defined as ome would expect) a long hand way of writing
I := 10.1+ (5.1 - %);

IN1 and IN2 are the input parameters of the functions. In the function call they must be assigned expresslons
of the same type as they were declared as in the function declaration. In the function call they can appear in
any order. Every input parameter musé be given a value by an assignment.

Function definitions are split into a function declaration section, where the function’s name, its return type,the
function’s input parameters and any temporary internal variables are declared, and a function body section
where the algorithm defining the function is defined.

Functions may not be recursive, that is the body of a function cannot call itgelf.

5.2.1 User defined functions

Simple functions The following shows a simple example of a function that just returns the value passed
wnto it.

FUNCTION simple : REAL
VAR_INPUT

IN : REAL;
ERD_VAR

simple := IN;
EXD_FUNCTION

The result of the function is given by assigning 2 value to the function block name — in other words within
the body of the function the name of the function can be treated as the single “output” variable.

CDL guarantees that if the function is given no value by an execution of the funciion body it will have the
default initial value of the function type. For example the following function

FUNCTION bad: REAL
VAR_INPUT

IN : REAL;
END_VAR
END_FUNCTION

FXPRESSIONS

would zlway result in a value of 0.0.

e

Functions may have a body that contains any set of CDL statements (section 7). They may also have internal
variables. I[nternal values may be initialised explicitly; they are initialised on every call of the function. For
example

FUNCTION EXi: LREAL
VAR _INPUT

TN, IN2 . LREAL,;
EED_VAR

iR

TEMP: LREAL := 10.01;

TEMP1 : LREAL;
EED_VAR

TEMP := TEMP = IN2;

TEMP1 := TEMP * TEHNP;

EXi := IN1 - TEWP - TEMPI;
E¥D_FUNCTION

Here TEMP is initialised to 10.01 on every call of the function, TEMP1 is initialised to the default initial value
for LREALs, 0.0, on every call of the function.

Internal variables are hidden from users of functions — only the input parameters and the value of the function
are visible.

Note that within the function body the function name acts like an extra internal variable, so it can appear in
expressions. For example the statement

EXi := EX1 * 2;

could be added to the function EX1 above.

5.2.2 Using simple functions

Simple non-array functions may be used in expressions just like single element variables, literals or fully indexed
array variables. In the following assignment the above function is used three times,

¥ := EBXi{ IN1
EX1{ INI
INZ2 :

10.0, IN2 := $1.0) +
EX1(IN1 := 100.0 / Y, IN2 := 11.0 + 10 },
3.0e-1);

i

3

Values are assigned to parameters of functions by an assignment statement. Type checking is strict, so that
the types of the left and right hand side of assignments, and the types in complex expressions must match.

ot

EXPRESSIONS

5.2.2 TFunctions and arrays

Functions may be defined that return arrays and/or have input parameters that are arrays, for example —

FUNCTION TRIV : ARRAY [1 .. 10 1 OF DINT
VAR_INPUT

TN : ARRAY [1 .. 10 1 OF DINT;
END_VAR

TRIV = IH;
EKD_FUNCTIOHN

The rules for array to array assignment (see page 18) are followed when using such functions, so the following
are all legal because the size of the arrays or array stices being used all match —

VAR

a: ARRAY [1 .. 10] OF DINT;

b: ARRAY [1 .. 2, 1 .. &5 1 OF DINT;

c: ARRAY [¢ .. 4, 1 .. 2, 1 .. 51 OF DINT;
END_VAR

a := TRIV (IN :
b := TRIV (IN :=
c[1] := TRIV (IN := b);
b := TRIV (IN := <[2]);

c[2] := TRIV { IN := c[1]);
ciz2]l TRIV (IN := TRIV { IN :
c[2] TRIV (IN := TRIV { IN :

]
1]

b)
a)

]

b))
TRIV (IN := c[3])));

il

1
H]
il

CDL also supports the concept of functions that can take arguments of arrays of any size. A built in expression
DIM is available to query the actual dimensionsof a variable. DIM(name,N) returns the actual size of dimension
N of variable name.

For example a function to do generic matrix multiplication would be —-

FUNCTION m_mult : ARRAY [..,..] GF DINT
VAR_INPUT
inl, in2 : ARRAY [..,..] OF DIXT;
END_VAR
VAR
i,j,k : DINT;
END_VAR
IF DIM(in1,2) <> DIM(in2,1) THER
RETURN;
EXD_IF;
FOR 1 := 1 TO DIM{int,1) DO
FOR j := 1 TO DIM(irZ,2) DO
FOR k := 1 TO DIM(in1,2) DO
m_multii,jl = momult[i,j) + intfi, k] * in2lk,i3;
END_FOR;
END_FOR,;
END_FOR;
END_FUNCTIOR

Rt

EXPRESSIONS

(FOR statements are described in detail in section 7.4.1.) Here is an example of using the above function —

VAR
mi,m2; ARRAY (1..2,1..2] OF DINT :=
1,0,0,1;

EXD_VAR
mi = momult(ini 1= mi, in2 = m2);

When using such functions the actual size of the paramsters or valuss being assigned to must be determinable
without analysing the algorithm of the function. It is illegal to nest such functions without specifying a size.
So the following is an error

(* Illegal because the size of the value assigned to the
first in2 is not known *)
z1 = momult{ int := ml, in2 := m_mult{ ini := ni, in2? 1= m2));

In such circumstances the user can specify an actual size for the parameter when calling the function, for
example —

(* Actual size of in2 is specified to be 2 by 2 matrix *)
ml := m_mult(inl := m1, in2[1..2,1..2]1 :=
mmalt(inl := mi, in2 := m2});

5.2.4 Standard functions

CDL has some built in functions. Operators are “built in functions” with a special syntax. In addition type
conversion functions are built in.

Products that conform to CDL may have other built in functions.

Type conversion functions Type conversion functions are used to convert from one built in data type to
another. They may be used to do, for example, mixed integer and floating point arithmetic. Type conversion
funciions are always of the form

<0LD TYPE>_TO_<NEW TYPE>

For example REAL_TO_DINT converts a REAL value to a DINT. By convention the input parameter to type
conversion functions is always called IK.

The following is an example of use of some type conversion functions —

VAR
a : DINT;
b : LREAL;
END_VAR

a := 10 * LREAL_TO_DINT(IN := b);
b := DINT_TO_LREAL(IN := a * 100 -
LREAL_TO_DINT{IN := b));

This section is not complete

o e

FuncTIiON BLOCKS

6 Tunction Blocks

R

A function block is a Program Organisation Unit, which, when executed, yields one or more values. Multiple.
named, instances of a function block can be created. Each has an associated identifier the instance name and
2 data structure that contains its input, output and internal variables. All the values of this data structure
persist from one invocation of the function block to the next; therefore invocation of a function block with the
same input parameter values does not always yield the same output values.

A function block can be thought of as a software integrated circuit. In the same way as one type of integrated
circuit can be used many times in a particular printed circuit board, so a function block type can be instantiated
many times in CDL.

Function blocks can also be thought of as a user defined data type. In the same way as a DINT type can be
instanced (by declaring a variable of type DINT) so a function block can be instanced by declaring a variable
of the function block type.

Function blocks wiil always run under control of a Task. Therefore any statements in a Function Block are
executed every time the task runs, unlike in an ordinary sequential language such as Pascal, where an explicn
loop is required to repeat statements.

Only the input and output parameters of a function block are accessible when a block is instanced — the
internal variables are hidden.

Function block definitions consist of a function block declaration section, where the function block type name.
the variables {input, output and internal) are declared, and a function block body section, where the algorithm
defining the function block execution is given. The body consists of either a set of statements (section 7) or z
sequential function chart (section 8).

A simple function block declaration is shown below —

FUNCTICN_BLOCK Run Av
VAR_INPUT

Enable : BDOL;

Input : REAL;

END_VAR
VAR_OUTPUT
Output : REAL;
END_VAR
I¥ Enable THEN
putput := (Imput + Dutput) / 2 ;
ELSE
GQutput := Input ;
END_IF ;

EXD_FUNCTIOK_BLOCK

(IF statements ar fully described in section 7.3.1.)

As noted above function blocks can be instanced inside other function blocks. They are declared in the VAR®
section as if they were types like DINT, LREAL etc. So a block containing two instances of Run Av mighs
be —

3strictly speaking it is the Resource Level Block that runs under control of the Task and hence its sub-blocks — see section 31
“CDL at present restricts function block instances to being internal {i.e they may not beinput, output or in out)

e e e

FunoTion BLOCKS

FUECTION_BLOCK Use_run Av : -
VAR_INPUT

Erablel, Enable2 : BOOL;

Inputt, Input2 : REAL;
END_VAR
VAR_CUTPUT

Qutputi, Output2 : REAL;
END_VAR
VAR

21, R2 : Run_Av;
END_VAR

Function block instances can be called using function block call statements, which copsist of the instance name
of the block, followed by named parameter assignments. Continuing the above example, Use_run_Av could
call its two instances of Run_av as follows —

i
1]

R1(Enable := Enablel, Imput :
R2({ Enable := Enable2, Input :

Inputi);
Input2);

Because input data is preserved between cne call and the next of a function block instance, it is not necessary
to specify a value for all the input parameters {unlike for functions). The previous value assigned to the input
parameter is used. For example, in

Input2 := 3.90;

R1{ Emable := 1, Imput := Inputl + 10.0);
Ri(Input := Imput2 + 1.1};

Input2 := 10.0;

R1(O);

the second call of R1 will still have Enable set to 1, and the third call will still have Input set to its previous
value of 4.1.

Inputs to function block instances may only be assigned to when the block is called. They may not be used in
eXpressions.

Values of VAR_OUTPUTs of function block instances are always available to be used in expressions. They are
accessed using a hierarchic name syntax, where a “.” is used to separate levels in the hierarchy. For function
blocks only outputs (and in-outs) are visible so there are only two levels in the hierarchy (except when using
Services, see section 11). For example the outputs of the Use_zrun_ Av function block above could be set from
the values of the outputs of the instances R1 and R2 of Run_Av above as follows —

i

Cutputl :
OQutput2 :

R1.0utput;
R2.0utput + 3.1;

Function blocks may alsc have VARIN_OUT declarations. Ounly variables or other function block in-out
parameters may be passed to a function block in-out parameter. Furthermore vartables and 1In-out parameters
passed to an in-out parameter may be modified from within the function block body. If, for example, a function
biock was declared as

FUNCTION_BLOCK inout
VAR_IN_OUT

A: DINT;
END_VAR

h o= A+ 1
END_FUNCTION_BLOCK

]

FUNCTION BLocKs

and was instanced and called as follows —

G e

VAR
¥ © inout;
Y: DINT;
END_VAR
¥ o= 1;
{4 =¥}

then the value of ¥ after the call to instance x of function block type inout would be 2.
in-out parameters of a function block instances may be used in any expression like output parameters. 5o the
next statemnent in the above example could be

Y o= 1 o+ x.A;

and Y will now have the value 3.

(‘DL aliows arrays of function block instances. An array of inout function blocks could be declared as
arr - ARRAY [1 .. 10 1 CF inout;
To access or call elements of the function block instance array indexing must be used —

arrf13(4 = Y,
Y := 10 * arr[1].A + 10;

6.1 Default Initial Values

Variables in function blocks either have a default initial value or a user supplied initial value, as described on
page 17. The initial value 1s referred to as a cold start value. It is however possible to override the initial value
of inputs of function blocks when they are instanced.

Suppose a function block type called EX has the declaration in it —
VAR_INPUT

IN¥ : DINT := 100;

IN2 : DINT := 20;
END_VAR

By default this means that the initial value of IF has the value 100 and that IN2 has the value 20.

It is possible to override this when instancing the function block using a parameter list with a set of values
passed to cold start each parameter —

VAR
INST: EX (I¥ := 10000);
INST2: EX { IN2 := 1, IN := -20 };

END_VAR

'

FUNCTION BLOCKS

The values passed in the declaration of the instances INST and INST2 override the initialisation in the function
block declaration.

Furthermore CDL allows any expression to be used to cold start parameters. This means that initial values
can be passed all the way down the function block hierarchy, by initialising function block instance parameters
from function block input parameters. So if the block £X had within it some other function block instances,
initial values couid he passed through as foliows —-

FUNCTION_BLOCK EX
VAR_INPUT
I¥ : DINT := 100;
T2 : DINT := 20;
END_VAR
VAR
AINST: XX { IN -= IN, INZ := IN2);
END_VAR

By default the parameters AINST.IN and AINST.INZ will have values 100 and 20 respectively. However if
when the block EX is instanced, coid start values for its parameters are specified these will be passed down to
AINST.IW and AINST.INZ.

Arrays of functicn blocks are initialised in the same way as arrays of simple variables, by specifying a comma
separated list of initialisers, except that the initialisers are assignments to input parameters of the block, (see
page 18). For example —

VAR
ATNST: ARRAY [1 .. 41 OF XX (IN := 3, IN2 :=1Y),
3{ IN := 1, INZ := 3) ;
END_VAR

initialises as follows —

1x{11.18 = 3, xx[§].182 = ¥,
Xx[2].IN = 1, XX[2].IN2 = 3,
¥x(33.I8 = 1, Xx{31.1IN2 = 3,
yxfal.In = 1, ¥x[a].I¥2 = 3

Function block inputs and outputs may also be arrays. Within the function block they may be initialised
using array initialisation syntax. When instancing the block this initialisation may be overriden using explicis
indexing or array to array assignment, or by using array imtiaiisation syntax. The block of type YY shown
below

FUNCTION_BLOCK YY

VAR_INPUT
IN1, IN2, IN3: ARRAY [1 .. 5 J OF DINT :=
1, 2, 3, 4, 5;

EXD_VAR

has user supplied default initialisation of its three input arrays.

When instanced this can be overidden as follows —

I

FuNCTION BLOCKS

val
I : ARRAY [1 .. 5] OF DIRT;
YINST : YY (
(* Initialisation using axrray to array assignment *)
INT := I,

{# Initialisation using indexing *}
TH2[1] := 1, IN2[2} := 2, IN2[3] := I[1],
(* Initialisation using array initialisation syntax *)
N3 := {3 ,¢,~t, 121,11}
s

Note that { ¥ has to be used to bracket any array initialisation syntax within function block initialisation.

6.2 Wiring

Sometimes it is desirable to always evaluate an expression and give its value to a function block input, or =
function block output, on every call of the block.

CDL provides the wiring operator ::= to allow this.

Suppose, regardless of what path was taken through the body of a function block, one of its cutputs always
had the value of the sum of two inputs, and an internal variable. One way of implementing this is to assign
the expression to the output when the output is declared i.e

VAR_QUTPUT
QUT1 : DINT ::= IN1 + IN2 + INTRNL1;
END_VAR

It is then an error to attempt to assign any other value to GUT1 in the block body. The wiring expression, in
this case INL + IN2 + INTRNL1, will be evaluated at the end of the block body execution, and the resulting
value assigned to the wired output. Wiring expressions are evaluated in the order they are declared in at the
end of block execution.

It is also possible to wire inputs of function block instances. Again it is an error to assign a value to a wired
input anywhere else in the block body. The wiring expression 1s evaluated on every call of the block instance.
For example —-

VAR_OUTPUT
F : FTYPE (IN ::= (INO + IN1) / 2);
END VAR

wires the input F.IN to the expression (INO + N1y / 2

As a final example, the following two blocks are equivalent, though one, using wiring, is shorter than the
other —

or¢ e s -

FuncTioN BLOCKS

FUNCTTION_BLCCK XX
VAR_IKPUT
IO, IN1 : DINT;
END_VAR
VAR_CUTPUT
nuri @ DINT ::= F.0UT + IHO;
END_VAR
VAR
F : FTYPE (IN := 0, IR ::=
(INO + INLY / 2);
END_VAR
IF INC > 1000 THEE
F (LARGE := TRUE };
ELSE
F{ LARGE := FALSE);
END_IF;
END_FUNCTION_EBLOCK

FUNCTION_BLOCK XX
VAR_IKPUT
INO, INi : DINT;
END_VAR
VAR_QUTPUT
OUTi : DINT;
END_VAR
VAR
T - FIYPE({ IN := 0 J;
END_VAR
IF INO > 1000 THEH
¥ (LARGE := TRUE , IN :
ELSE
F(LARGE := FALSE , IN := {INO + IN1) / 2};
END_I¥F,;
QuT := F.0QUT + IKC,
END_FUNCTION_BLOCK

(TNO + INtY / 2);

The example also shows cold starting the function block input IN as well as wiring it.

[t is possible to wire the whole of an array, but NOT single elements of any array. The usual rules for array
to array assignment are followed (see page 18).

6.3 Programs

Programs are equivalent to function blocks that cannot be instantiated inside other function blocks — therefore
they can only appear at the Resource level, see section 10.

Programs are delimited by the PROGRAM END_PROGRAM key words, e.g —

PROGRAM FbTypel

VAR_INPUT
In : INT;
END_VAR

VAR_OUTPUT
Out : INT;

B : FBTypeB;
END_VAR

VAR
C : FbTypeB;
END_VAR

(* algorithm of program *)

END_ PROGRAM

T e

STATEMENTS

7 Statements e

17

Table 8 shows the statements supported by CDL. Statements are always delimited by *;

7.1 Assignment statements

Assignment statements replace the value of a variable by the result of evaluating an eXDrassion. AD assighient
statement consists of a variable name, on the left hand side, followed by the assignment operator :=, followed
by the expression to be evaluated. For example the expression

& o= By

replaces the value of the variable A by the value of the variable 8.

See alsc section 4.2, 5.2 6 and page 18.

7 9 Function and function block control statements

Function evaluation is part of expressions (see section 5 and section 5.2).

Function blocks are invoked by a statement consisting of the name of the function block instance followed by »
parenthesised list of named input or in-out parameter value assignments, as described in section § and showz
in table 8.

The RETURN statement provides immediate exit from a function or function block. For example —

IF IN > 1000 THEN
(* input overflow *)
0K := FALSE;
RETURN;

END_IF;

Y := 10;

will return from the function block or function containing the RETURN statement when the IN variable has 2
value of more than 1000. In other words the statement ¥ := 10 and any after it are not reached once the
RETURN statement is executed. If the RETURN was in a function block body execution resumes at the statemert
that called the function block. If the RETURN was in a function then the function yields whatever value it was
given before the return statement was executed (or the default initial value for the function’s type il none wes
given).

7 3 Selection statements

Selection statements provide a way of selecting one or more groups of statements for executlon, based ona
specified condition which has the form of an expression of type BOOL. Examples are given in table 8.

STATEMENTS

Table 8: CDL language statements

Statement type

Example

Assignment

(7.1)

A = B; CV := CV + i; PT := £#300ms

function

block invocation
apd FB output
usage (7.2)

XX(IN := 10, INI := 30 - YY / RRY;
Y = XX.0UT - 33;

RETURN (7.2)

RETURX;

IF (73.1)

IF X < ¢.0 THER

¥ o= 10.1;
ELSIF Y > 0.0 THEN

7 = 11.01;
ELSE

F o= 10.11;
EED_IF;

CASE (7.3.2)

CASE XX GF
i,6: W o= 1;
2t W o= 4
3: W 1= 100;
4, 6..10: W := 1;
ELSE
ERROR := 1;
END_CASE;

FOR (74.1)

FOR i := 1 TO 100G BY 2 DO

IF WORDS[i] = 'KEY’ THEN
EXIT;

END_IF;

END_FOR

FOR j := 10 TO 1 BY -1 DO
X := ¥ + 50;

END_FOR;

WHILE (7.4.2)

J = 1;

WHILE J < 100 AND WORDS[J] <> KEY BO
J o= J+ 2

EXD_WHILE;

REPEAT (7.4.3)

] = -1;

REPEAT

J =] + 2;

UNTIL J > 100 OR WORDS[3j] = ’KEY’
END_REPEAT,;

EXIT (7.4.4)

Empty
statement

EXIT;

>

Tm it

STATEMENTS

7.3.1 U statements

e S

Simple IF statements have the form

IF <boolean expression> THEN
<group of statements>
END_IF;

The <group of statements> are executed if and only if the <boolean expression> evaluates to TRUE.

Alternatives can be supplied using ELSIF, Le

IF <boolean expression> THEN

<group of statements>

ELSIF <altsrnative boolean sxpression> THEW
<alternative group of statements>

END_IF;

First the <boolean expression>isevaluated, if and only if it evaluates to TRUE the first <group of stat ements>
if executed, if it does not evaluate to TRUE then if and only the <alternative boolean expression> evalu-
ates to true the <alternative group of statements> are executed, otherwise execution continues after the

WF statement.

Any number of ELSIT alternatives may be specified, for example

IF A = 1 THEX
£ = 2; Y := 105
ELSIF 4

I

2 THEN
o= 3; Y := 11;
ELSIF A = 3 THEX

¥ = 4; Y := 15;
ELSIF A = 11 THEXW

¥ = 20; ¥ = 21,
EXRD_IF;

Finally the ELSE clause can be used to specify a group of statements to be executed if conditions for the I¥
and any associated ELSIFs are false,

IF A 1 THEN
X := 2; ¥ := 10;
ELSIF A = 2 THEN
Y :=3; 7 = 11;

1

ELSTF A 3 THEX
X := 4&; ¥ := 15;
ELSIF A = 1t THEXN
£ = 20; Y := 21;
ELSE
% o:= -1; Y = 100;
END_IF;
In the above example for any values of A other than 1, 2, 3, and 11, the statements X := -1; ¥ := 100; am
executed.

Note that IF statements can be used to provide conditional calls of function blocks e.g. —

STATEMENTS

IF 4 = 1 THEN) it
FB{ SP1 := 2; B5P2 := 10},

EISIF 4 = 2 THEX
FB{ SP1 := 20, SP2 := 50};

END_IF;

7.3.2 (Case statements

CASE statements consist of a selector expression which is of integer type. The value of the expression is used
to braneh to a statement group. Bach statement group is labelled by one or more integers, and/or a range of
integer values. The labels must all be unique, i.e there must be no overlap in the integer values supported.
The staternent group branched to is the one labelled by a value which is the same as the selector. If the value
of the selector is not in any of the labels then all the statement groups are skipped and execuilon continues
after the Fase statement, unless an ELSE clause has been used to specify a default group of statements to be
executed.

Sorne case statements and the equivalent IF statement are given in the tables below.

CASE A CF I# 4 = 1 THEN
i; X = 2; Y 1= 10; X o= 2; Y := 10;
2: % = 3; Y = 11, ELSIF A = 2 THEXN
3 : X :=4; Y := 15, ¥ :=3; Y := 11,
11: % = 20; Y= 21; ELSIF A = 3 THEN
END_CASE X :=4; Y := 15;

ELSIF 4 = 11 THEN
X := 20; Y := 21;

END_IF;
Adding ELSE clauses gives
CASE A OF IF 4 = t THER
1: X = 2; Y := 10; X = 2; Y := 10,
2 % = 3; Y = 1%, FLSIF A = 2 THEN
3 X :=4; Y = 15; ¥ =3, Y := 11;
11: X := 20; Y:= 21, ELSIF A& = 3 THEN
sLSE X :=4; Y = 1i5;
X = —-1; Y 1= 100, ELSIF A4 = 11 THEN
END_CASE; ¥ o:=20; Y := 21;
ELSE
o= —-1; ¥ = 100;
END_IF;

A complicated example showing using labels which are ranges of integer values and lists of values is —-

STATEMENTS

CASE A OF
20..23: X :=2; Y := 10;
1,2,51 @ X = 3; Y = 11;
3,100,200..203 + X := 4; Y := 15}
9..11, 300..302,
400, 500: X = 20; Y:= 2i;
ELSE
L o= —-1; ¥ = 100;
END _CASE;

7.4 Tteration statements

Iteration statements are used to group a set of statements

block execution cycle.

7.4.1 For statements

A simple FOR. statement has the form

IF 4 = 20 CR
OR A = 22
THEN
=279
ELSIF A = 2
OR & =
i = 3
ELSIF 4 =
DR A
OR &
OR &
X :=4; 7
ELSIF 4 = 11
QR & =
OR & =
R 4 =

THEN

oW o

¥ = 20, Y :

ELSE

¥ :=-4i; ¥

END_IF;

FOR <loop variable> := <initial expression>

TO <final value expressior> DO
<group of statements>
END_FOR;

The <loop variable>must be of integer type, and the <initial expression>and <fina
must be expressions of the same integer type.
<initial expression> The <group of statements>
<loop variable> is incremented by 1. Execution of th
the value of the <final value expression>. It is an error to assign a value to the <loop variable>int

<group of statements>.

A = 21
OR &4 = 23

= 105
OR A = 1

51 THEX

= 11,
OR & = 100

200 OR & = 201
202
203 THEN

= 15,

OR 4 = 10

9 OR & = 300
301 OR 4 302
400 OR & 500

]

21;

160;

i

which are then executed repeatedly within the sanw

For example the following loop is a very slow way of adding 10 to variable X —

FOR I := 1 TO 10 DO
¥ = X+ 1,
END_FOR;

The <loop variable> can be used within the loop, typically for indexing into arrays. This loop assigns tie

values 1 to 10 to the first 10 elements of the one dimensional array AR.

1 value expressilon>
The <loop variable> is initialised to have the value of ik
are executed repeatedly. After each execution the

e loop terminates when the <lLoop variable> reaches
b

Iz tast

STATEMENTS

FOR T := & TO 10 DO : e e
AR[IT = I;
EXD_FOR;

I is also possible to specify an increment expression -

FIR <loop variable> := <initial expression>
' TQ <final value expression>
BY <increment expression> DO
<group of statements>
YD _FOR;

The <increment sxpression> must be of the same integer type as the <loop variable>.

On each repetition of the loop the <loop variable> is tncremented by the value of the <increwent expression>.
Far example this loop

FOR T := 10 TG 1 BY -1 DG
ARTIY := I;
EXD_FOR;

fills the one dimensional array AR with values 1 to 10, starting with element 10 and working backwards.

Note that the <finai value expression> and the <increment expression> are evaluated once and once
only before the loop is executed; if they contain variables and those variables are altered in the loop body 1t
makes no difference to the number of times the loop is executed.

For example these two FOR loops are equivalent.

J = 20; J = 20;

K = 2; X := 2;

FOR I := 1 T0O J + 1 BY KDO FOR I := 1 TO 21 BY 2 DO
AR[I] := J; AR[I] := J;
J o= J 4+ 1 J =7+ 1;
K := K + 1; K :=K + J;

END_FOR; END_FOR;

If the initial value, increment and final value expression are such that the loop variable never reaches the
final value exactly, execution will stop on the cycle where the loop variable is greater than final value, if the
increment expression is positive, and less than the final value, if the increment expression is negative. So the
following loop

FOR I := & TO 2 BY 2

will execute once.

Of course it is possible to have nested loops, since a FOR loop is a statement and the loop body is a set of
statements which can themselves be FOR loops. For example this loop fills a two dimensional 3 # 4 array with
the values 1, 2,3,4,5,6,7,8, 9,10, 11, 12.

FOR I := 1 TO 3 DO
FOR J := 1 TO 4 B0
AR2[I,J] 1= J + & % (I - 1);
END_FOR;
END_FOR;

STATEMENTS

7.4.2 "While statements

P

WHILE statements allow a group of statements to be executed while a boolean expression yields the valuz

TRUE —

WHILE <boolean-expression> DO
<group of statements>
END_WHILE;

For example the following set of FOR and WHILE loops are equivalent

FOR T := 10 TO & BY -1 DO
AR[IT := I;
EXD_FOR;

FOR I := 1 TC 3 DC
FOR J = 1 TO 4 DO
AR2[I,I] := T+ 4 % (T - 1);
END_FOR;
END_FOR;

7.4.3 Repeat statements

I = 10;

WHILE I > 0 DO
ARTIT = I;
I:=1-1;

END_WHILE;

I :=1%;
WHILE I < 4 B0
J = 1;
WHILE J < 5 DO

AR2{T,J] := ¥ + 4 * (I - 1);

J =3+ 1;
END_WHILE;
I :=1+14;
END_WHILE;

REPEAT statements allow a group of statements to be executed until a boolean expression yields the vales

TRUE, —

REPEAT
<group of statements>

UBTIL <boclean expression> END_REPEAT;

For example the following set of FOR and REPEAT loops are equivalent

FOR I := 10 TGO 1 BY -1 DO
AR[IY := I;
END_FDR;

= 10;
REPEAT
ART{I] := I;
I ;=1 -1

UNTIL I < 1 END_REPEAT;

s

STATEMENTS

FOR I := % TG 3 DO
FOR J := ¢ TO 4 DO
AR2(T,3] := 3 + 4 x (I - 1);
END_FOR:
END_FOR;

T.4.4 Fxit statement

S O
I :=1;
REPEAT
J = 1;
REPEAT
AR2[I,I] = 3 + 4 * (I - 1};
J o= 3+ 1
UNTIL J > 4 EXD_REPEAT;
I =1+ 1

UNTIL I > 3 END_REPEAT;

The EXIT statement allows early termination of the execution of the group of statements in any REPEAT,
FOR, or WHILE loop. Control passes to the next statement after the first loop terminator. For example these

loops are equivalent —

FOR I :=1 TG 5 DO

AR{1] := I;
IF I = 3 TBEN
EXIT;
END_IF;
END_FOR;

FOR I := 1 TO 3 DG
AR[1] = I;
END_FGR;

and in the following example if FLAG is 0 then SUM has the value 15 and if FLAG is | then SUM has the value 6

at the end of the loop.

SUM := C;
FOR I := 1 TOQ 3 DO
FOR J := 1 TO 2 DO
IF FLAG THEN EXIT; END_IF;
SUM := SUM + T,
END_FCR;
SUM := SUM + I;
END_FCR;

SEQUENTIAL FuncTiON CHARTS

8 Sequential Function Charts

Sequential function charts are another way of defining the body of a program (section 8.3) function block
(section 8) or service {section 11) . A set of internal steps are active at any one time. Transitions can be made
on boolean expressions between one or more steps Lo one or more steps. The boolean expressions may include
the time a step has been active. Steps may be associated with an action. Actions are a set of CDL staternents
that may be another SFC or statements as described in section 7. Actions may be executed conbinucusly while
a step is active, or once when the step 1s active.

Sequential function charts consist of a series of step declarations, transition specifications, and action specifi-
cations. They have an equivalent graphical representation defined in IEC-1131-3.

Using SFCs it is possible to loop, to branch, to have parallel threads of execution, and for parallel threads of
execution to rendezvous,

The mode! of SFC execution is that every time a block is executed whose body is a SFC the actions for active
steps are executed, and then the Lransitions out of active steps are tested. If any evaluate to TRUE the next
step or set of steps are marked as being active, and the currens step or steps are marked as being inactive.

8.1 Steps

A step is declared by specifying a step name and an optional action together with a single action qualifier. Fer
example

STEP STEP1: FILL(X); END_STEF

declares a step called STEP1 with an associated action FILL which has a qualifier ¥.

Every chart must have an initial step deciared using the key word INITIAL_STEP. For example —
INITIAL_STEP START; END_STEP

Note that in this example the siep has no action, though cne could have been specified.
If there is a unique step to which all paths through a SFC lead then this is known as an end step.

Associated with a step are some flags that may be used anywhere in any expression in the function block body
as if they where cutputs of a function biock with the instance name of the step.

Products may supply additional flags for steps.

The flags are

X The % flag is a BOOL which has value TRUE when the step is active, and FALSE when the step is inactree.

T The T flag is 2 TIME which represents the time a step has been active for. 1t is reset to t#0 each time the
step is deactivated’.

QT The QT flag is a QTIME which represents the time a step has been active for. It Is reset to qt#0 each
time the step is deactivated!.

F If the associated action is itself an SFC that has an end step this flag is TRUE if the action’s SFC bis
reached the end step. Otherwise this flag is FALSEZ

Steps may be declared anywhere in the body of & block, service, or program, but they cannot be referenced
before they are declared.

1Products will either support a 9T flag or a T fag.
2This flag is only required if actions that have SFC bodies are supported {see section 3.5)

SEoUENTIAL FuncTion CHARTS

8.2 -Transitions

Transitions represent the condition whereby one set of steps are inactivated, and another set of steps are
activated.

Transitions are declared as follows —

TRANSITION <opticnal name> FROM < from set oI steps> 70 < to set of steps> :=
< boolean expression> ; EHND_TRANSITION

The <opticnal name> may be omitted, if specified it gives a name for the transition. The < from set of steps>
and the < to set of steps> are either single step names, or a ¢omma separated list of step names. The

< from set of steps> specifies the set of steps that are deactivated when the transition condition is TRUE,
and the < to set of steps> the steps that are activated when the transition is true. Wote that transitions
are only evaluated if all of the < from set of steps> are active.

A simple transition between two steps could be —
TRANSITION FROM $1 TO S§2 := READY; END_TRANSITION

When step S1 is active and the BOOL variable READY is TRUL step 52 will be activated, and S1 deactivated.

if the requirement was to wait in a step for 2 seconds and then move onto ancther step, the transition could
be —

TRANSITION FROM S1 TO S2 := S1.T >= T#2s; END_TRANSITION

To create a loop where step S1 was active for 2 seconds, and then step S2 became active for 1 second, and
then the loop began again, the following transition could be added —

TRANSITIGN FROM S2 TO S1 := S2.T >= T#is; END_TRANSITICN

There is nothing to stop a step looping to itself. This is really only useful if the step has an action that is
executed once only when the step is activated, (rather than a continuously executed action), and the desire 1S
to trigger the action again on a particular condition —

TRANSITION FROM $1 TO St := DO_IT_AGATN ; END_TRANSITION

Simultaneous sequences happen when a transition goes to more than one step. For example the following
transition branches from step S3 to three other steps when a variable TEMP has reached 100 —

TRANSITION FROM 53 TO (S4,S5,56) := TEMP > 100.0 ; END_TRANSITION

in this example steps (54,55,56) all become active when the condition TEMP > 100.0 is TRUE. This sets up
three parallel branches of execution.

A rendezvous of parallel braches occurs when a transition occurs from one or more steps to one single step. All
the steps “before” the transition {or the “predecessor” steps} must be active before the transition is tested —

TRANSITION FROM (S11,S15,516) TO $7 := QUANTITY > 50 AND GP_IN ;
END_TRANSITION

e

SEQUENTIAL FuNCTION CHARTS

In this example step ST becomes active (and steps (511 _S15,516) are deactivated) if and only 1f

1. Steps (511,515,516) are active (so their .X flag 1s TRUE)

2 The transition condition QUANTITY > 50 AND OP_IN is TRUE.

A way to picture SFC execution is to imagine it as 2 network of steps and transitions with active steps marked
with a foken. As the SFC evolves the token moves from one active step to another. On reaching a parallel
branch the token splits into several tokens, one for each active branch. On the rendezvous of paraliel branches
1he several tokens merge into one.

Once parallelism and branching is introduced there is the danger of having “multiple activations” of paths.
where a step that is already active is re-activated. For example

STEP S3: S3ACT(P) ; END_STEP
TRANSITION BAD FROM St TD (S2,§8) := 1; END_TRANSITIOR

TRANSITION FROK S2 TO Si := 1; END_TRANSITION

As written the SFC will continuosly loop round steps 51 and S2. However the transition from S1 also activates
step S3. Suppose S3 is still active when 51 is active. The action S3ACT will be re-triggered when the transisicn
BAD is evaluated, therefore it may be run more than once in one execution cycie.

If we add some steps to the example above,

STEP S3: S3ACT(P} ; END_STEP

TRANSITION BAD FROM S1 TO (S2,53) := 1; END_TRANSITION

H

TRANSITION FROM 52 TO 51 1; END_TRANSITION

TRANSITIOK FROM S3 TO S4 :=

ury

; END_TRANSITION

TRANSITION FROM 54 TG S5 =

[y

; END_TRANSITION

TRANSITION FROM S5 TO $6 := 1; END_TRANSITION

TRANSITICN FROM S6 TO ST :=

[y

; END_TRANSITION
The set of active steps at any one time will look like —

51

$2,83

51,54
$2,53,55
$1,54,56
52,93,55,57

so that the parailel thread of steps $3,54,35,56,57 has several active steps In it at one. Generally this is an
error, because there 1s an uncontrolled proliferation of tokens active.

Another possible error is to cause a “lock up” whereby an SFC by nature of its tepelogy cannot make ary
progress. For example in the following SFC

SEQUENTIAL FuNCTIoN CHARTS

e et

-2 ANSITION FROM S1 TO S2 := ONE ; END_STEP
TRANSITION FROM St TO S3 := TWO ; END_STEP

~2ANSITION FROM (S2,S3) TO S4 := THREE; END_STEF

if two transitions out of one step are both TRUE at the same tirne, the last one textually specified takes
srecedence. So in this example, because 52 and $3 are mutually exclusive, the transition to S4 can never occur
.since any rendezvous only occurs if all of the predecessor steps are active).

To try to reduce the risk of badly behaved SFCs,steps that have a transition to a rendezvous can have only

one transition out of them. So the following is illegal -—

TRANSITION FROM (S2,53) TG S4 := 1; END_TRANSITION

(x TEIS IS ILLEGAL BECAUSE CF ABCVE RENDEZVOUS ¥}
TRANSITION FROM S2 TO §5 := 1; END_TRANSITION

8.3 Actions

Actions are CDL statements, including SFCs, that are controlled by step activation and deactivation.

An action has the foilowing format —

ACTION <action name>:
<action body, either SFC or ordinary statements>
END_ACTION

Actions are associated with a step. When a step is declared an <action name> and qualifier are provided, (see
3.1}, for example in —

STEP STEPi: TRIGGER(P); END_STEF

the TRIGGER action has a P qualifier. Action qualifiers determine how actions are executed. The following
qualifiers are supported —

N is the “continucus qualifier”. Actions with this qualifier are executed once on each execution eyele while
the associated step is active. When the step is deactivated the action is executed one last time — the
code in the action can distinguish this by testing the .X flag of the step.

P is the “one-shot” qualifier. Actions with this qualifier are executed once only each iime the step they are
associated with changes from inactive to active.

As a simple exaraple consider a program that has to control a chemical process. There are three tanks, sach
associated controlled with a tank function block. Two liquids are put into the first two tanks and heated until
they reach a temperature of 100. The second tank is then mixed for 2 minutes.

The tanks are then drained into the third tank and mixed for 5 minutes. This tank is then drained, and the
program goes back to start.

The tanks are represented by function blocks with a REAL temperature output, a mixer on/off input, and two
fill and heat BOOL command inputs.

SrQUENTIAL FuNCTioN CHARTS

PROGRAM mix
VAR

t1,t2,43: tank;
ERD_VAR

INITTAL_STEP mixprog: dotanks_act(¥); END_STEP
STEP dotanks: detanks_act(N); END_STEP
STEP start: init(P); END_STEP
STEP mont: monl_acti{N); END_STEP
STEP mon?: man2_act(¥); END_STEP
STEP mix?: mix2act(¥) ; END_STEP
STEP £i113: £illact(P) ; END_STEP
TRANSITION FROM mixprog T0 (start,dotanks) := TRUE; END_TRANSITIOE
TRANSITION FROM start TO {moni,mon2) :% TRUE; END_TRANSITION
TRANSITION FROM mon? TO mixZ := t2.temp >= 100.0 ; END_TRANSITION
TRANSITION FROM {(moni,mix2) TO £ill3
i= (tl.temp >= 100.0) AND (mix2.T >= t#120s) ;

END_TRANSITION
THANSITION FROM £il1l13 TO start := £il13.T >= t#300s ; END_TRANSITION
ACTION dotanks _act:
(*+ Execute the tank function blocks continuosly *)

+3();

t1();

t20);
END_ACTION
ACTION init:
(+ empty tank3, fill tanks i and 2, and commence

heating *)

£3(fi1l1]l:= FALSE, mix := FALSE};

£1¢(£ill := TRUE, heat := TRUE);

£2¢(fi11 := TRUE, heat := TRUE);
END_ACTION

ACTION mix2act:
(* Mix tank2. On exit from the action switch mixing off *)
IF mix2.X THEN
+2(mix := TRUE);
ELSE
£2(mix := FALSE);
END_IF;
END_ACTION

ACTION fillact:
(+ Fill tank3, empty tanks 1 and 2 and switch off heating.
Start mixing tankd *}
t1{ heat := FALSE, fill := FALSE};
£2(heat := FALSE, fill := FALSE);
£3(fill := TRUE, mix ;= TRUE);

e

SEQUENTIAL FuncTion CHARTS

IND_ACTION

— g

LCTION monl_act:
(* Monitor tank 1 *)
IND_ACTIGN

LOTION mon2_act:
{* Momitor tank 2 *)
IND_ACTION

IND_PROGRAM

The SFC has two parallel branches. One, the dotanks branch is used to rake sure that the tank function
blocks are always being executed to do their control.

The other branch actually does the sequencing. It splits into two parailel steps moni and mon2 which monitor
the tanks until they reach the required temperature. The mon2 goes on to the mix2 step when the second
tank is ready for mixing. There is then a rendezvous between monl and mix2 when tankl is at the correct
remperature, and tank2 has been mixed, where they go on to step £ill3. In this step tank?d is filled, and
mixing in tank3 begins. After 5 minutes the program goes back to the staxt step.

Most of the actions that change the modes of tanks are one-shot P actions. However, a continucus action
mix2act is used both to switch on mixing of tank? and to switch it off when the step is deactivated. An
alternative would be to have used two one-shot actions, one to switch mixing on, and the next to switch it off,
or even more simply to switch mixing off in the £illact action.

8.4 SFC execution

A SFC is executed on every call of the block it is defined in. SFC execution consists of the following —

\. The actions for any active step are executed according to their qualifiers. S0 if a step with a one-shot
action has just become active on this execution cycle, the action is executed, otherwise it is not. If a step
has a continuous action, then the action is executed.

9. The .T or .QT step output flags that say how long a step has been running are updated.

3. The transitions out of any active step are tested, except if a transition is a rendezvous, in which case all
predecessor steps must be active for the transition to be tested. If two transitions out of a step are both
TRUE then the last one specified takes precedence.

4. Steps that have TRUFE transitions out of them are deactivated. Their .X flag is set to false.
5. Any of these steps that have continuous N actions have the actions executed one last time.

6. Steps that have TRUE transitions into them are marked as being active, for the next time round the
executicn cycle.

This process is repeated every time the block a SFC is defined in is itself invoked.

e T

SEOUENTIAL FuncTion CHARTS

3.5 S¥C actions S

Action bodies may be either ordinary statements as described in section 7, or they may themselves be another
SFC, with its own initial step.

Normally action bodies can be shared by multiple steps {i.e an action can be associated with any number of
steps), but if the body is a SFC the action may only be used by one and only one step.

An action that is a SFC can have either a ¥ gualifier or another qualifier, the A qualifier. These qualifiers affect
the way the SFC action is terminated when the associated step is deacsivated.

If the action has a N qualifier then the transition condition out of the step is not tested until the SFC in the
action has reached its end step (a unique step to which all paths through a SFC lead). If there is no end step
then the step will never be deactivated.

Consider —

STEP usesfc: sfcact(N); END_STEP
TRANSITION never FROM usesfc TO next := TRUE; END_TRANSITIOR

ACTION sfcact:

INITIAL_STEP s; END_STEFP

STEP z; END_STEP

STEP y; END_STEFP

TRANSITION FROM s TG {y,z) := TRUE; END_TRANSITIGN
END_ACTION

sfcact has a N qualifer and a SFC with no unique end step, so the transition never will never occur.

If an end step is reached, then the SFC will halt having executed any action associated with the end step once
(and once only). However next time the action is activated (i.c when the controlling step is re-activated}) the
SFC will start at its initial step.

The .F flag of a step whose action is a SFC is TRUE when the SFC reaches its end step.

If a SFC action has a A qualifier (known as “abortable”) then any transitions out of the step are tested
regardless of the state of the SFC in the action body. If a transition is TRUE then

 All active steps in the action body are deactivated and their .X flag is set to FALSE.

« Any actions associated with a step via a N qualifier are executed one extra time on deactivation (in tke
same way that any N action is on deactivation of a step).

o The SFC is re-initialised so that the initial step is the first one executed next time the action is used.

There is an equivalence between SFC actions with N and A qualifiers. Any SFC action with a ¥ qualifier can e
written in terms of an A qualifier and a test on the .F finished flag. These fragments of CDL are equivalent —

REFERENCES

STEP si: sact(N); END_STEP

TRANSITION FROM s1 TO s2 := 1;
END_TRANSITICN

ACTION sact:
INTTIAL_STEP ai; END_STEP
STEP a2: END_STEP

TRANSITICON FROM ai TO a2 := 1;
END_ TRANSITION

END_ACTION

STEP s1: sact(A); END_STEP

TRANSITION FROM st TO s2 := s1.F;
END_TRANSITION

ACTION sact:
INITIAL_STEP ai; END_STEP
STEP a2; END_STEP

TRANSITIOE FROE al TO a2 := I
END_TRANSITION

END_ACTICH

By using the different varieties of actions various effects can be achieved —

1. Using the ¥ qualifier and a SFC action ensures that the top-level step remains active until all the steps

in the sub SFC are complete.

2. Using the A qualifier allows aborting a sub SFC cleanly when a condition occurs that deactivates the top

level step.

3. Calling a function block that has a SFC body from within a continuous action means -~

e When the controlling step is deactivated the sub SFC is no longer executed.
+ When the controlling step is re-activated the sub SFC restarts from where it was stopped.

o A separate user supplied input to the function block must be provided to explicitly re-initialise the

SFC.

9 References

Bvery Function Black or Program can have a reference declaration section. All data specified in this section
is remote data, where remote means that it has its definining definition somewhere other than in the current
block, though it may well be in the same RESOURCE or indeed TASK. The reference section is denoted by
the keyword REFERENCE appearing after the keyword VAR. Note therefore that references are internal to

the block they are defined in.

For example

PROGRAM ext

VAR
writeflag: BOOL;
id: STRING;

END VAR

VAR REFERENCE
remflag: BOCL;
remid: STRING;

END_VAR

e

TR

HEFERENCES

has a reference section which contains two remote objects remflag and remid. ‘ ‘ S

Any object may be declared to be a reference, from simple variables of any type, to arrays of any type { except
arrays of function blocks }, to function blocks.

References have a set of “properties” which are predefined built in variables. Properties may be assigned or
read or both. Properties cannot be wired to but they can have inittal values. Properties are used to control
and monitor the reading and writing of data via the reference.

The first stage in accessing remote data is specifying where it is and then matching it to the local data. If this
operation is successful then the remote data may be read and/or written,

9.1 Specifying the Remote Data Objects

A VAR REFERENCE has an associated string, the “ref” string. This is set by assigning it {rom within the
ST PROGRAM, for example

remflag ref := 'Resi:pidl.ia’;
or ab cold start, for example

VAR REFERENCE
remflag: BOOL { ref := 'Resi:pidi.in’} ;
END_VAR

The - indicates that the next name is a “property” of a VAR REFERENCE object. Property names ar
predefined, and the ref property is the reference string. Any ST string or ST string expression may be
assigned to if.

The currref property when read returns the last set reference string.

9.1.1 Simple types

For a simple VAR REFERENCE, that is one which is a simple built in ST type {e.g DINT, BOOL, LREATL)
the reference string must specify the full hierarchic path to the object, prefixed by an optional RESOURCE
name and “”. The syntax is

simple ref_string ::= [rescurce name 1 ':’ pame { ’.’' name }
P

{using the usual BNF notation where [] means an option, and {} means zero or more of the enclosed). nane
is any valid 5T name.

The resource_name is the name of a remote RESOURCE. If omitted the reference is to something in the locad
RESOURCE. The list of names separated by . is the full path to the remote object. So in the above examypie
Res1 is the name of the remote RESOURCE, pidl is a block in the remote RESQURCE which contains a
variable in.

When a reference string is assigned the RESOURCE will query the specified remote RESOURCE for informss-
tion about the specified object. The information returned is

« The addressability. Is it possible to address this object?

- AE e

DEFERENCES

¢ The type of the remote object (DINT, LREAL ate.)
o The mode of the remote object {input, cutput etc.)

o The size of the remote object, which will be 1 for simple types and the total oumber of slements for an
array type.

s A fast address for the remote object.
+ The TASK that owns the remote object.

e Any write protection.

1= order for reads and writes to be performed, the remote data must be addressabie. In addition the type and
sze must match the type and size of the local VAR REFERENCE.

For simple types (i.e VAR REFERENCESs that are not blocks) the mode of the remote object may be anything
. = loeal internals match remote internals, in-outs, inputs or outputs).

For complex types (i.e VAR REFERENCESs that are blocks) the mode of the remote object must match exactly,
sxcept that remote internals may match local inputs, in-outs or outputs.

9.1.2 Arrays

For arrays of simple variables, as well as the type and mode matching, the total number of elements in the
remote object must match the number in the local object. So, for example a remote 2 by 10 array would
match a local 10 by 2 array. In general a remote array with 6 dimensions i1, iz, i3, %4, i5, is matches a local one
with dimensions j1, j2, J3, J4, Js, Jo provided &) # iy * iy % 14k 05 £ 15 = J1 % Jo * J3 ¥ Ja * J5 * Js. Local data at
position i, T3z, T3, T4, Ts, L6 would be the remote data at position ¥1, ¥z, ¥3, ¥4, ¥s, ¥s If the same position has
been specified when the array is “flattened’ into a one-dimensional array.

[t is also possible to match to single elements of an array, or to the whole of a sub-array, in exactly the same
way as for ordinary array assignment.

For example given a remote array declared as

array: ARRAY[1..10,1..10] OF DINT;

and the local declaration

VAR REFERENCE
matchall: ARRAY[1..10,1..10] OF DINT;
matchpart: ARRAY [1..101 OF DINT;
matchele: DINT;

then the following would be valid,

matchall ref := ’Remote:prog.array’
matchpart ref := 'Remote:prog.arrayl[2]’
matchele ref := 'Remote:prog.arrayl[1l,2]’

So it is possible in the reference string to index into remote arrays, and have a successful match provided the
size of the local object matches.

Note that a local array object can only have a single reference string {not an array of them).

REFERENCES

G:1.3 Fanction Blocks . omn g

A VAR REFERENCE can also be a function block. The reference string then specifies one or more remoie
data objects that are matched to the inputs, outputs and in-outs of the local object. In the sumplest case
where only one remote object is specified, the remote object must be a block with parameters which match the
local object’s parameters in name, mode, bype and size except that a remote internal may match a local wput.
output, in-out or internal. In other words each parameter of the remote object is individually matched to the
local object’s parameters by name as if it were a simple type. (The remote block may have extra parameters
that are not matched). The local biock is then an image of (possibly part of) the remote block’s data.

Resource Remoie
Resource Local

Program Prog

Instance ref
Instance remi

@- of type local
of type remote

whichisa

vref

Figure 2: A reference to a remote block

The diagram in figure 2 should help understanding of the example shown below. Given a remote block such as

FUNCTION_BLOCK remote
VAR_INFUT

ini:LREAL;

in2: ARRAY[1..10] OF DINT;
EKD_VAR
VAR_CUTPUT

outi: BOOL;

ignored: BOOL;
EXD_VAR

which was instantiated in a RESOURCE called Remote in a PROGRAM called prog as block instance rem:.
and a local block definition of the form

FUNCTION_BLOCK local
VAR_INPUT)
in1:LREAL;
in2: ARRAY[1..10] OF DINT;
END_VAR
VAR_OUTPUT
outi: BOOL;
END_VAR

then the following VAR REFERENCE

REFERENCES

VAR REFERENCE o gt
ref:lccal;
END_VAR

ref"ref := ’Remote:prog.reml’;

would match the inl, in2 and outi parameters, and would enable data to be exchanged via those parameters.
Of course by instantiating a local instance of remote all of its visible parameters may be matched.

It is also possible to specify a list of remote objects that are to be matched to a local block, by using a special
syntax in the reference string. Fully hierarchic names can be put in a comma separated lists, or as a shorthand
{” and '}’ are used to bracket comma separated lists of names which are then all taken o be relative to the
previous hierarchic name. For example the string

a{b,x.e,%{j,k,1{n,n}}7}

expands to the names

a.b, a.x.e, a.f.j, a.f.k, a.f.1.m, a.f.i.n

A local parameter must be assigned to each name in the resulting expanded list, for example
a{ loci := b, ¢ { loe2 := d, loc3 := e}}

means that the local parameter Loct is matched to a.b, loc2 o a.c.d and loc3 tc a.c.e.

The full syntax of the reference string is

ref_string ::= simple_ref_string | complex_ref_string
simple_ref_string ::= [resource_name] ':’ name { .’ name }
complex_ref_string ::= [resource_name] ':’ { primary.name }

‘{! alternate_names_list ‘}’
alternate_pames_list ::= alternate_names { , alternate_names_list bs

alternate_names ::= [hierarchic_name] ‘{’alternate_ names_list '
final name

final_name ::= local_ parameter_name ':=! hierarchic_name

1.7 name }

primary_name ::= name {
hierarchic_name ::= name { ’'.’ name }

local _parameter_name :@:= Dame

resource name - Nlame

REFERENCES

The primary_name is the name relative to which all the-following list of names is specified. If 2hsent the
following list of names is taken relative to the remote RESQURCE as a whole, (i.e the list of names must
contain the full path to the object). The { and } notation brackets a comma separated list of hierarchic
names. Any name may iself contain a list of sub-objects using the { and Fnotation. At the bottom level the
local_parameter_name specifies the parameter of the local VAR REFERENCE that is to be matched to the
remote name. Any parameters of the local VAR REFERENCE that are not explicitly assigned remote objects
are matched to parameters of the same name in the primary_name; if the latter is absent this is an error,

Duplicate Local _parameter_names are not allowed, but duplicate remote names are, so it is possible to match
one remote variable to two or more local variables.

For example

VAR REFERENCE
RP . RemPID;
END_VAR
RemPID"ref := ’Ri:a{ $p := b,c{ Pr := 4, Up := err’

means that Ri:a.b must match RP.Sp, R1:a.c.d must match RP.Pv and Ri:a.c.e must match RP.Op. If R?
has an extra parameter X then it is rnatched to Ri.a.X.

9.1.4 Services

A VAR REFERENCE may also contain services (see section 11)

9.2 Reading the Remote Information

When a reference string is assigned to a VAR REFERENCE, the RESOURCE will work out the names of the
remote objects it needs to match to the local, and send (in one message) these to the remote RESOURCE.
Various errors may then occur. These may be found by examining the VAR REFERENCE’s status property.
for example

IF ref~status > 1 THEN
(% an error of sSome sort *)
END_TIF

The errors associated with matching are

A syntax or other error in the reference string

[]

o The remote RESOURCE is not reachable.

*

One or more of the remote objects do not exist.

L]

The remote objects are owned by more than one TASK, and so cannot be made into one reference,

The remote objects do not match the local ones according to the rules specified above.

Once a match has been completed succesfully a single read is issued to ensure that the local copy of dasa
contains something intelligent.

This operation is known as “reading a tempiate”.

L]

REFERENGCES

9.3 Reading Remote Data S e

Once a reference has been matched to the remote objects, data may be read. The scan property sets the scan
rate in milliseconds for the remote data. For example

ref "scan := t#10s;
or else at cold start

YAR REFERENCE
ref : local { scan := t#10s }
ZRD_VAR

sets the scan rate for the reference ref to be once every 10 milliseconds This means that every 10 milliseconds
the RESOURCE will send a read message to the remote RESOURCE specified in the reference string to read
all of the remote data. When the reply comes back the local image of the remote data is updated. A scan rate
of 7ero means no reads are performed.

If, however, no reply is received by the time the next scan is due, no timeout occurs, and no message is resent.
(Timeouts are handled separately with a separate global value) . Thus specifying a very fast scan time means
that the data will be read as fast as possible, being limited by the rate at which the remote TASK responds
and the local TASK sends messages.

A scan is performed on each TASK cycle where “Time now > Time of last scan -+ Scan time” { a scan time
of § = oo). Therefore to perform a single-shot read, the scan time should be changed from 0 to a value < the
TASK cycle time and then reset to 0 on the next TASK cycle.

A property called currscan can be used to read the Iast set scan rate.

For blocks all data is read (i.e all matched outputs, inputs and in-outs) and placed in the locai VAR REFER-
ENCE.

Accessing the data of the VAR REFERENCE from CDL always returns the last data read.

The property newData may be read to determine if any new data has been read since the last time this property
was read. The reading of the property is a destructive operation.

9.4 Writing Remote Data

A write to the remote object is triggered by either assigning to it {if i¢ is a simple variable) or calling it (if it is
a block) passing it input parameters as usual. A write message is generated, unless a write message is already
outstanding. In this case a fiag is set to indicafe that another write is required when the previous write is
acknowledged. In this way the latest local value is always written to the remote object. Note that writes can
notb occur faster than the rate at which the remote TASK acknowledges them, i.e. every assignment does not
guarantee a write.

if the VAR REFERENCE is a simple variable or array all the local data is sent (even if only part of an array
has been written).

If the VAR REFERENCE is a function block the inputs and in-outs of the block that were assigned a value
in the call of the block are sent (the same rules are followed for arrays as in the previous paragraph). After
the write (in fact with the response to the write) the values of the remote object are read, so that the local
copy is automatically updated with the latest values of the remote data ® This means that to perform control

5Nots that this does not mean response to the write waits for the remote block to execute, merely that a read is done immediately
after the write and the data sent back as part of the response to the write.

et e

it

REFERENCES

across the network at a particular rate a write should be issued at that rate, and a read of the data pot being
written will automatically occur on any write, hence at the same rate. For example, suppose a block that was
being executed every second had the following declarations and wiring in it —

VAR REFERENCE
RemVal: Analogue{ Op ::= locpid.Cp);

END_VAR

VAR
LocPid: PID (Py ::= RemVal.Process_Val };
END_VAR

LocPid();
RemVal();

This would once a second execute the local PID, send the computed output value to the remote Analogne
block, and then receive a new value of of the .Process_Val output.

T addition to the above constraints no data that is reported as write protected at the remote RESQURCE is
sent in a write nessage.

It is possible to mix writing with scanning on 2 single VAR REFERENCE however it should be noted that If
a scan is currently in progress then the write will not be sent until the read has completed. °

It is possible to prevent the writing of data by setting the dontWrite property. Once set no data will ke
written to the remote objects until the property is cleared. Once cleared the write will occur at the end of the
next task cycle, this is unlike a normal write where the write is issued at the time of the assignment. While
the dontWrite property is set any incoming reads (from setting non-zero scan rate) will be discarded as they
would overwrite the local data. This is particularly useful when writing to elements of arrays, to prevent the
whole array being sent across the network for each write of an element.

9.5 Reference Time stamp

A var reference has a time stamp giving the time at which data was last refreshed. The time is available via two
properties, the first TimeStamp gives the time of last udpate in DATE_AND_TIME to second accuracy. Another
QTIME property QTimeStanp gives the additional number of micro seconds to be added to TimeStamp.

8.6 References to References

It is possible for a Reference to be a Reference to a remote object which may itself be a Reference to some
other object. Of course it is then possible for there to be a cycle in a chain of References, so that following tie
chain leads back at some point to an object already in the chain.

The guiding principles are that
e At the completion of a read/write any data in a var reference is always a coherent set of data from sone
time in the history of the ultimate destination.

e Writes and service calls always propagate through to the uitimate destination, if possible.

s Any cycles will be detected and an error reported.

& There is actually no such things as a read or write message — there is only a read-write message that specifies some dals to
write and some to read. Read messages are read-write messages with an empty set of data to write.

ST Y

REFERENCES

Variou§ possibilities exist — S

1. The remote object is not a var reference
2. The remote object is a single var reference
2. The remote object is a combination of var references

4. The remote object is a mixture of a var reference and some other objects

This is known as the “resolution” of a var reference. The actual resclution via a property of var references,
resolution. The values are as in the above list. Value 0 means that the tempiate has not yet been read, or
there has been a mismatch.

Vote that since reference strings may change dynamically these states may also change at run time.

In case 2 the system works transparently through the remote object. For a read if the remote data is coherent
and more recent than the last data obtained then it is read directly, otherwise a read through occurs, (i.e the
read is forwarded on). This process occurs at every intermediate var reference until the ultimate destination
is reached.

One exception to this is that on the first read of data, or any change of of the scan rate, there will always be
a read through to the ultimate destination.

If the remote data is not up to date, a read through occurs.
For writes and service requests {section 11), the request is always forwarded on to the nltimate destination.
Case | above has already been explained.

Cases 3 and 4 are regarded as errors. These errors are reported in the status, readStatus, and writeStatus
properties { see section 9.7). Note because the reference strings of the remote objects can change at run time
the error is “unsuccessful operation”, not “failed”.

9.6.1 Adjustment of scan rates

If in case ¢ a reference does a read request and an intermediate reference detects that its local data is not
recent enough, as noted, a “read through” occurs. The intermediate reference will also adjust its local scan
rate to try to cache the data in anticipation of the next read request, so that a read through is avoided. The
scan rate will be decayed over time, though it will never fall below that set by the local CBL.

The intention is to provide automatic caching of remote data in intermediate nodes, that adjusts itself according
to the data request rate.

There is a BOOL property called “propertyProtect that if set prevents this adjusment occuring to a reference.
This defaults to TRUE.

R

REFERENCES

5.7 Examining the state of a reference

e vt

The status property of type DINT is available to determine the current state of a reference. The status
property has the values and meaning shown in the following table —

State Vaiue | Meaning

QK 0 Last operation succeeded

inProgress i Read, write or read template in progress

ParseFail 2 A reference string had the wrong syntax

ResclveFail 3 Local names in the reference string did
not mateh te the local object, or were
duplicated

NoResources 4 The task has no buffers left to send mes-
sages with, or the expanded reference
string Is too long

TemplateMismatch | b The read template did not match the local

. one

Unreachable 6 The router was not reachable

BadStatus 7 Pither a read template specified non ex-
istent objects, or read failed to read the
data at the remote end (though the mes-
sage arrived), or a write failed to write
{for example if some block cutputs were
being written)

NonUniqueOwner 8 In a read template the remote objects be-
long to more than one remote task

SystemError 9 This should not be seen, if seen there is a
internal error in the Resource

Cyclic 10 The reference results in a cycle of refer-
ences that point back to this one

NotCoherent il The reference points to a set of other ref-

erences and objects, possibly owned by
more than one task, or in error

9.8 Timeouts and failures

All read, write and read-template operations have built in timeouts.

On a timeout the Resource will automatically try to re-read the template of the remote objects again. This i3
to ensure consistency if the timeout was because a remote Resource was reloaded.

In addition each message contains a checksum for the remote Resource. This is stored in the local reference,
and if a read or write returns with a different checksum to the local one then the remote Resource has besn
reloaded between the read or write. Again the remote template will be re-read.

The automatic re-read of templates in these circumstances means that a timeout is not visible to the user nia
the status property, so two other properties are available to examine the success of read or write messages.
These are readstatus and writestatus DINTs. These both have the following states

State Value | Meaning

OK 0 Last operation succeeded

InProgress ! Read, write in progress

Failed 2 The last read or write failed

Undefined 3 No read or write issued with this ref string

Unsuccessful | 4 There is 2 problem with references to references, status will be 10 or 11§

REFERENCES

Reads and writes are essentially asynchronous. To simulate synchronous operatlons a Sequential Fungtion
Chart may be used, which tests the read/write status in a transition to determine when an operation completed.

A synchronous write may be performed by writing the remote data in a step and transitioning cut of the step
when the reference has OK writestatus.

A synchronous read may be performed by setting the scan property from O to a positive large value in a step
(s that only one read will be done), transitioning out of the step when readstatus is OK, and setting the scan
property o zero.

9.9 Summary of Properties

The following table summarises the properties that a reference has, (see also section 11, page 63).

Property ST Type | Mode Meaning '

ref STRING | Input Specifies the object(s) referred to (section
9.1)

status DINT Output | Monitor any errors using a reference (sec-
tion 9.7)

writestatus DINT Qutput | Mcnitor success or failure of the last write
operation (section 9.7)

readstatus DINT Output | Monitor success or failure of the last read
operation (section 9.7)

curref STRING | Output | The current reference string (section 9.1)

scan TIME Input Used to set the scan rate (section 9.3)

propertyProtect | BOOL Input Prevent automatic scan rate adjusment
(section 9.6.1)

TimeStamp TIME Output | Last time of data update {section 9.5)

QTimeStamp QTIME | Output | Last time of data update (section 9.5)

resolution Usint Output | References to references (section 9.6)

currsean TIME Output | The current scan rate (section 9.3)

9.10 Addressability and Write Protection

It is possible to control whether any instanced variable or function block is writable or addressable via a var
reference,

Write Protection Using the same style of syntax as for properties, it is possible to write protect a variable
— for example

VAR
x : DINT { writeProtect := 1 };
END_VAR

This means that x cannot be wristen to via a var reference.

writeProtect is a BOOL attribute (see section 12), and may be initialised with any constant boolean expres-
sion.

it is not possible to write protect a block instance, only simple variables may be protecied {though of course
they may be inputs, outputs or in-outs of blocks).

It is an error to write protect a var reference.

8

RES0OURCES

Addressability Similarly it is possible to make any object invisible using a BOOL addressable aftribute —

VAR

x : DINT { addressable := 0 };
¥ : FBTYPE { addressable := G
END_VAR

in the case of simple variables setting addressability to FALSE means that the variable cannot be addressed
via & var reference.

In the case of a block setting addressability to FALSE means that the block and none of the blocks it instances
{to any level below it} can be addressed via a var reference. It is an error £o make a block that contains var
references unaddressable.

By default internal variables are not addressable, and input, output and in-out variables of a block are ad-
dressable. addressable may be used to override the defanits.

10 Resources

A Resource declaration usually represents a node on a network. Some nodes may be able to run more than
one Resource at a time. Some nodes may provide a Resource interface to some other lower level network. A
Resource instances a set of blocks (Programs or Function Blocks) and a set of Tasks that execute a block.

A simple example of a Resource declaration is -

RESOURCE tsti ON controller!

TASK fast (INTERVAL :
TASK slow { INTERVAL :

t#3ms) ;
t#100ms) ;

il

PROGRAM digitals WITH fast : dig;
PROGRAM analogs WITH slow: contrel;

END_RESQURCE

The RESOURCE <resource name> ON <controller type> specifies a resource name and a target machine
type.

The TASK <task name> (<task parameter assignments>) declares a task and initialises the task param-
eters. Tasks always have an INTERVAL parameter. In the example there are two tasks specified, fast and slox.
These are executed every 3 and 100 milliseconds respectively. More precisely these will execute the blocks that
they control, once and once only in every 3 and 100 millisecond interval. (Any failure to do this is known 25
an overrun and is an error.)

It is possible to assign a task to a specific processor in a multi-processor system by using the syntax

TASK <task name> { <task parameter assignments>) ON <processor name>

<processor name> is a pre-declared identifier for the processor. The set of supported processor names, if any,
is a product specific issue. For example

CRTRERRT 3

RESQURCES

t#ims) ON DMC_1;
t#1s) ON CE3000;

i

TLSK fast (INTERVAL :
TASK slow { INTERVAL :

T ARG

i

A set of function block or program instances may then be declared, with the general syntax

<hleck class> <block instance name> WITH <task name> :
<block type> <optional wiring and initialisation>
<hlock class> is either PROGRAK or FUNCTION BLOCK.

c=ask name> is the name of a previously declared task that controls execution of the block with instance name
<block instance name>.

<plock type> is the type of the block (e.g PID).

<optional wiring and initialisation> may be omitted — if given it assigns values to the inputs of the
biock using the usual parenthesised list of parameters syntax as in a function block call.

In the example above two programs are declared, digitals of type dig and analogs of type control. These
are run under control of fast and slow respectively.

in the above example there is no communication between the two programs, and there is no initialisation
of any data in the two programs. This can be achieved by using wiring (section 6.2) and cold start syntax
{section 6.1). There are two restrictions, however ——

l. Whereas general cold start values support arbitrary expressions containing variabies, cold start values at
the Resource level must be constant expressions.

2. Whereas general purpose wiring supports expressions, at the Resource level only simple assignments are
atlowed. .

An example of a Resource with inter-block wiring and cold start mitialisation is —

RESOURCE tstl OX controlleril

TASK fast { INTERVAL := t#3ms);
TASK slow (INTERVAL := t#100ms);
PROGRAM digitals WITH fast : dig (go ::= analogl.go)

FUNCTION_BLOCK analogl WITH slow:
controll (in ::= amalogi.out, in := 2.0, en = 1);

FUNCTION_BLOCK analog? WITH slow:
controll (in ::= analogZ.out, in := 1.0, en := 0);

END_RESOURCE
Array inputs to resource level blocks can be initialised using either indexing or array initialisation syntax —

FUNCTION_BLOCK arrs WITH slew: floats
{ ini[1] := 1.0, in1[2} := 2.0, ini[3] := 1.1,
in2 =4 1.1, 2.1, 3.1});

Array inputs or outputs can be wired, with the usual restrictions on array to array assignment (see page 18).

éa
=

SERVICES

101 Tasks and task execution model

e A

The full set of task parameters supported by a CDL node is a product specific issue. Task parameters may be
wired to block parameters in the same way as any block parameter.

The INTERVAL parameter should always be supported. [t means that the task will be run once during every
INTERVAL seconds. TNTERVAL may be of type TIME or QTIME, again this is a product specific issue.

Other parameters, such as PRIGRITY which assigns 2 UDINT priority to a task in a pre-emptive task execution
system may be supported.

The edge triggered BOOL parameter SINGLE may be supported, if so it denotes thai the task is event driven

and will run when SINGLE goes from FALSE to TRUE. INTERVAL and SINGLE are mutually exclusive {1.e
SINGLE is used INTERVAL is zero} and should not be used together with the same task.

10.2 Remote blocks

It is possible to specify that biocks at the Resource level are VAR REFERENCEs to blocks in another resource.
(see section 9). The keyword REFERENCE replaces the PROGRAM or FUNCTION_BLOCK keywords. The properties
of the reference are specified in the nsual place, after the type of the block. The general syntax is —

REFERENCE <block instance name> WITH
<task name> : <block type> <cptional wiring>
{ <property assignments> }

A real example is

RESQURCE tsti1 ON controllerl
TASK slow (INTERVAL := t#10s J;

FUNCTION_BLOCK analogl WITE slow:

controll (in ::= remotei.Op, in := 2.0};
REFERENCE remotel WITH slow : PID { Pv ::= centroll.out)
{ ref := ’R2:A.PID’ ¥}

END_RESCURCE

Here every ten seconds (the interval of task slow), a new process value is sent to the remote PID, and a new
value for the controlt input is received from the remote PID.

11 Services

Services are an extension to the 1IEC1131-3 standard designed to provide remote procedure call and synchre-
nisation of tasks across the network, and extra methods for function blocks resulting in easier to understand
and more modular biocks.

Services make it significantly easier to write distributed ST apphications.

SERVICES

11.1 Service declaration e

Services are extra “methods” on function blocks. They are declared at the end of the normal function block
variable section. Services have input declarations, output declarations and internal declarations, as well as a
service body. Formally the syntax for a function block declaration is

<function block> ::= <function block variables>
[< service declarations>]
<function block body>

<service declarations> ::= { SERVICE <service name>
<gervice inputs>
<service outputs>
[<service internals>]
END_SERVICE }

<service inputs> ::= <function block input declarations>
<service outputs> ::= <function block output declarations>
<service bedy> ::= <function block body>

Note that services do not have in-out variables.

A <service body> can access any variable or call any blocks declared in the function block (but not in another
service) in addition to its own inputs and outputs. The rules for access are the same as for a function black body,
so any inputs are read only, outputs and internals are read-write. The names declared in <service inputs>
and <service outputs> must not conflict with names declared in <function block variables>, Le the
service names are in the same scope as the function block variable names. However once the service body
has been compiled the service internal variable names are no longer accessible (they are no longer in scopel,
though a service can call other services declared in the block. To avoid the possibility of recursion no forward
calling of other services is allowed.

Services and their inputs and outputs are available to the main function block body. There are three classes
of users for services. Firstly the service owner, the block the service is declared in. Secondly the service
instantiator, the block that instantiates the service owner. Finally there are any var references to an lnstance
of the service owner. Every user of a service has their own copy of the input and outputs which contain the
result of the last invocation they made of the service. Service internals are however shared between calls of a
service.

Service internal variables can be cold started just like any other parameter. Services are cold started after
function block cold start. Service input and outputs cannot be cold started. They have the default values O
for numeric types and the empty string for strings.

Service parameters can have no attributes set. A service can, however, be made unaddressable if desired (it
cannot be write protected).

An example service declaration is shown below —

FUNCTION_BLOCK ex
VAR_INPUT

inl: DIKT;
END_VAR
VAR_QUTPUT

cutl: DINT;
END_VAR;
VAR

loci : DINT;
END _VAR

SERVICES

{* set locl to service input, if it is
between 0 and 10, else signal an error *)
SERVICE servicel
VAR_INPUT
myin: DINT;
END_VAR
VAR_QUTPUT
ok: BOOL;
END_VAR
IF myin < 10 AND myin > O THEN
loci = myin;
ok = TRUE;
ELSE
ok := FALSE;
ERD_IF;
END_SERVICE

outi := ini + ontl / loci ;

EXND_FUNCTIOH_BLOCK

11.2 Service invocation

There are three classes of users for services. Firstly the service owner, the biock the service is declared in.
Secondly the service instantiator, the block that instantiates the service owner. Finally there are any var
references to an instance of the service owner.

Services are invoked in the same way as function blocks; i.e if an input value is not specified it defaults to the
tast value set by the user.

Each user has a private copy of the service outputs and inputs reflecting the last invocation of the service that
they made. It follows that if no invocation has ever been made by that user the values of the service outpuis
and inputs are zero for numeric values and the empty string for strings.

A service may be invoked either by a block which has a local instance of a block containing services (the service
instantiator), or by a block that has a var reference to a block containing services, or within the block {the
service owner) itself. The syntax for invocation for a service is like the syntax of a function block call, except
that the service name follows the function block name and a dot if the service is in a var reference or locally

declared block —

<service invocation> ::= [< function block name> 17 . < service name>
(< service input assignments>) ;

< service input assigmments > ::= < function block input assignments>

So continuing the above example, an instance of block “ex” called “exinst” would have the service “servicel”
tnvoked as

exinst.servicel(myin := 4 J;

Outputs from services are read using the usual hierarchic name syntax, e.g.

s A

SERVICES

IF exinst.servicel.ock THEN . e s
message(IN := ’set value ok3N’};

ZL3E
message(IN := ’failed to set value$N?’);

END_IF;

11.2 Service execution

There are two sorts of services. The first is an “immediate service”, where the service 1s executed as soon as
possible after it is invoked. The second is a “rendezvous” service where the service request is not executed
antil the block containing the service has accepted itf.

Services have one extra outpui variable built into them.

This of type USINT and is called “waiting”. This will have different values for each user of the service i.e for
every remote user using the service via a var reference and for the service owner and instantiator. The values
of “walting” are

0 | No service request made or the last request has
completed.

1 | Request is awaiting execution

2 | Request was rejected because another user is wait-
ing for the service to complete {usually only ap-
plies for rendezvous services or services with SFC
bodies)

3 | Waiting for the network

Services and Var References A var reference can be made to a block that contains many services; because
only one outstanding operation is allowed on var references, only one service request can be outstanding at
any one time for each var reference containing services. Trying to call another service when another operation
is outstanding will set the local service inputs and then generate an error on the var reference status output,
either “bad state” if there is a read or write in progress or “operation in progress” if a service request is in
progress (see section 9.7).

If a read or write is done with the var reference none of the service parameters are read or written. This is
because they are effectively private to each user of the service. This also means that the service outputs have
no meaning until the first invocation of a service. '

11.3.1 Immediate services

Loecal execution If the service is invoked in a block instantiated locally oritisa service of the current block,
then the service body is executed immediately the service inputs are assigned, just as if the service was a local
function block. The “waiting” output should always be 0.

i
4

SERVICES

B omote execution If the service is invoked in a block that is a reference to a remote block, theny gsxecution
proceeds as follows -

1. The service inputs are written to the local reference, and a service execute request is sent to the task
owning the block with the service. The request contains the local input values of the service. The
“waiting’ output is set to 3.

2. At the beginning of the remote task cycle the service message is received, and the service should be
executed. The output values are seat back to the requesting task in a service response Message.

3. When the requesting task receives the response the local output variables are updated and the “walting
output is set back to 0.

4. The only reason the service might not be executed is if a debug break point had been set in it before the
service request arrived, and a previous request had broken at that wait point. In this case the service
request will be rejected and the “waiting” output will be set to 2.

The CDL code for executing the service might look like

<block name>.<service name>(<input values>)

IF <block name>.<service name>.waiting = 0 THEE
process service outputs

END_IF;

11.3.2 Rendezvous services

A rendezvous service is not executed until the function block containing the service accepts ii. This is dome
using a new CDL accepi statement —

<accept statement> [:% WEEN <boolean condition> ACCEPT <service name>

For example

FUNCTION_BLOCK ex2
VAR_INPUT
inl: DINT;
change: BOOL;
ERD_VAR
VAR_QUTPUT
outl: DINT;
END_VAR;
VAR
loci : DINT;
END_VAR

(* set locl te service imput, if it is
between O and 10, else signal an error *)
SERVICE servicel
VAR_INPUT
myin: DINT;
END VAR
VAR_OUTPUT
ok: BOOL;
END_VAR

O

S e

SERVICES

IF myin < 10 A¥D myin > O THEN ot
locl := myin;
ok := TRUE;

ELSE
ok := FALSE;

END_SERVICE
outl := int + outi / locl ;

{* only accept changes to loci if the input
change is tTue *)
WEEN change ACCEPT servicel;

EAD_FUNCTION_BLOCK

Only one rendezvous service request to a particular service for a biock can be made at a time; any others when
one is outstanding are rejected.

The WHEN statement is effectively implemented as

IF service has been reguested AND <boolean conditioen> THEN
execute service body
END_TF

Local execution If the service is invoked in a block instantiated locally or is to a local declared service, then
if no other request is outstanding the input values are assigned, and “waiting” is set to 1. Once the service
has been executed then “waiting” is set back to zero. So the following CDL sequence could be used to invoke
a rendezvous service

IF want to execute a service THEN
<block name>.<service name>(<input values>)
END_IF;
IF <block name>.<service name>.waiting = 2 THEN
failed to get service request
ELSIF <block name>.<service name>.walting = 1 THEN
set flag to indicate waiting for service rasult
END_IF;
IF <block name>.<service name>.waiting = ¢ AND waiting for service THEN
process the service outputs
clear waiting for service flag
END_IF;
<block name>{); (* execute the service owner *)

Note that not testing the “waiting” output after asking for a service might be a coding error because the
service could complete immediately the service owner block is executed; the service caller would never know
that the original request had been accepted. '

g
=

SERVICES

Remote execution If the service is invoked in a block declared as a var reference, then execution nroceeds
as follows

1. The service inputs are written to the local reference, and a service execute requesl is sent to the task
owning the block with the service. The request contains the local input values of the service. The local
“waiting” variable is set to 3.

2. At the beginning of the remote task cycle the service message is received. If noother request is cutstanding
then the service inputs are written and the service request is noted. A message is sent back to the requestor
to set “waiting” to 1. However if there already is a service request outstanding the service inputs are not
written and a message is sent back setting “waiting” to 2.

2. When a service is accepted, a message is sent back to the requestor containing the service output values
and setting the “waiting” output back to C.

The CDL code for executing a remote rendezvous service is similar to that for executing a local one.

{See also 11.4).

Template matching with services References to blocks containing services go through two phases of
template matching. First the inpu$, outputs and any services are matched, and then each service has s
parameters separately matched. There is no syntax for overfiding the names of the remote parameters, so the
matching of service parameters is done purely by name. The actual service name may be overridden like any
other function block parameter. For example the following local template

FUNCTIOER_BLOCK exref
SERVICE rem
VAR_INPUT

myin: DINT;
ERD_VAR
VAR_OUTPUT

ak: BOOL;
END_VAR
NG_BODY
END_SERVICE
NO_BODY
END_FUKCTION_BLOCK

could mateh an instance in resource “Res” called “path.exinst” of function block “ex” above using the decla-
ration

VAR REFERENCE
remote: exref { ref := ’'Res:path.exinst{ rem := servicei}’}
END_VAR

No distinction is made between immediate and rendezvous services for the purpose of template matching.

There is no requirement that all the inputs and outputs of the remote service have to be matched, a subs:t
may be used.

=

SERVICES

Values of servStatus property Var references containing services have a “servStatus” property that ran
be used in the same way as “readStatus” and “writeStatus” (see section 9.9).

E

OK last operation suceeded

In progress, i.e waiting for the network

Last service request failed because of a
network related error or timeout

; 3 | Undefined — no request ever made

b e 2

Note that value 2 does not mean that a service request was rejected. [t only denotes any problems reaching
the service provider (i.e if “waiting” is set to 2 “servStatus” will have value 0.)

11.4 Service timeouts

For immediate services the usual var reference timeout is used, (section 9.8). If a reply 1s not received after a
timeout, then the servStatus and Status properties of the reference are set to denote the error.

Other errors such as reloading of resources etc. are handled just as for normal references.

For services the timeouts apply to the acknowledgement of the service request. There is no timeout on the
actual execution of the service. However a periodic message is sent to the remote task whenever a service 1s
awaiting completion. If no response to this is received then the servStatus property indicates a network error,
“waiting” is set to 2 and the Status property indicates a network error.

A user can implement a specific timeout by resetting the reference string after a given amount of time. This will
cause a re-read of the template, and discarding of any results of the service if they are received subsequently.

11.5 Services with SFC bodies

It is possible for Services to have a sequential function chart as a body. The SFC must have a unique end
step, that is one and only one step to which all paths through the chart lead, and from which there are no
transitions. Once a Service with an SFC has started execution each time the block the service is declared in is
invoked, the Service will execute its SFC once, i.e the actions for the active steps are called, and the transition
conditions examined to see which steps will become active and which inactive on the enxt cycle.

The Service is considerad to have completed execution when the end step 1s reached, and at this point the result
are sent back to the invoker of the service. A simple example of an SFC in a Service calling 2 comrmunicatlons
block is shown below —

FURCTION _BLOCK servex

VAR
(* The ’state’ IN_OUT is written 2 for a write, or 3 for a read
(# request, the comms block sets 1t to 1 while the request is
(* pending, and to O when it is done *)
docomms: comms;

END_VAR

SERVICE invcomms
VAR_INPUT

addr: STRING;

val: LREAL;

req: BOOL; (* 0 - read, 1 - write *)
END_VAR

TR T

, ATTRIBUTES

VAR_DUTPUT
newval: LREAL;
ok: BOOL;
END_VAR
INITIAL_STEP start: start_act(¥N); END_STEP
TRANSITIOK FROK start TO go := docomms.state = 1; END_TRANSITIOW

STEP go: go.act(¥); END_STEP

¢; END_TRANSITIOHN

TRANSITION FROM go TO end := docomms . state
STEP end : end_act(P); END_STEP

ACTION staxrt _act:
(% COMMS REQUEST STARTED *)

IF req THER
docomms{ state := 2, addr := addy, val := val);
ELSE
docomms{ state := 3, addr := addr);
END_ZIF;
END_ACTICON

ACTION go_act:

{* keep polling the comms bleck, until it has finished *)
docomms(};
END_ACTION

ACTION end_act:

(* COMMS REQUEST DONE *)
newval := docomms.newval;
ok := newcomms.ok;
END_ACTION

END_SERVICE

END_FUNCTION_BLOCK

12 Attributes

This section is provisional

The [FC1131-3 Structured Text (ST) language only provides sufficient attributes for objects such as Function
Blocks, Parameters, Programs to support the definition of “run-time” algorithms and the “run-time” execution
model.

Extra object attributes are required to add information particularly for supporting programming and diagnostic
tools and operator stations, for example, a Function Block needs a version number for software maintenance
purposes, Function Block parameters need units such as V, KVA, kg/s ete.

In the following example, the extra attributes as defined by CDL are shown in braces 7

7 Attribute names may not be the same as property names for VAR AEFERENCEs if the attributes are being given to referencss.

ot e

ATTRIBUTES

FUNCTION_BLOCK example { short_desc := ’a bleck to demonstrate attributes’, =
class := 'EXAMPLES’,
view_version := '1.07,
exec_version := ’1.1°7
¥
VAR_INPUT
Process Value : REAL { units := 'kg/m’,
format := 'HE7.20 };
Direction : USINT { enum_strings := 'UP:DOWN:LEFT:RIGHT’};
END_VAR

The CDL extensions provide a generalized method of adding attributes to {EC1131-3 objects. There is no
preconceived use of attributes; they simply add informasion that is absent from the ST language and can be
used for such things as : descriptions for assisting with user documentation and on-line help, software version
management, run-time parameters eg default execution rates, access control, display information etc.

12.1 Attribute definition

A1l attributes are defined in after the declaration section of an object. Attributes may be added to

e All VAR declarations

o After a Function Block or Program type name declaration
e After a Service name declaration

¢ After a Resource name

o After the declaration of tasks or blocks in a Resource

e To a step declaration’

« To an action declaration’

o To a transition declaration!

Attribute definition is a name and string value pair specified by

<attribute name> := <attribute string value>

An attribute value can refer to the attribute of another object within the same scope, {except if it 1s a runtime
attribute and the object is a reference). The same rule for scoping are used as for ordinary assignment. The “@”
character is the “astribute access” character (whereas the “.”character is used for hierarchich name access).
For example

VAR
(+ declare attribute attrib and assign value ’vall’ *)
A : DINT { attrib := 'vall’ F;

{* declare attribute new and make its value the same as that
of the attribute 'attrib’ of variable A *)
B : DINT { new := AQattrib }

'Run time attributes {see section 12.2} cannot be added to these

1T R

ATTRIBUTES

When instancing a block the attributes of its input, output or in-out parameters defined in the block type
declaration may be overridden. —

VAR
(+ Declare a Why attribute for the instance FBINST.
Override the Units attribute of the PV parameter of FBTYPE.
Override the Units attribute of the SP parameter of FBTYPE,
make it the same as the PV attribute of this instance of FBTYPE *)
FBRINST: FETYPE { PV := 1G.0 , SP := 100 3
{ Why := 'TempControl’, PY@Units := 'Fahr’,
SPQURnits := FBINST.PVQUnits T
END VAR

12.2 Attributes at run fime

By default attributes are not stored in run time systems. However some systems may wish to store certain
attributes at run time. They are then made available to CDL at run time using the reference mechanism.
Attributes are read-only at run time.

[£ an attribute declaration uses the wiring operator ::= then this means that the attribute should be made
available at run time e.g.

VAR
4 : DINT { attrib ::= ’‘vall’ };
B : DINT { new ::= ACattrib }

Run time attributes and non run time attributes are a distinet set. The left hand and right hand side of
attribute assignment must both be run fime or non-run time, and the operator used for assignment must
match; it is an error to mix them using the attribute access @ character, or by overriding attributes. For
example the following 1s an error —

A : DINT { attrib ::= ’'vall’ };
8 - DINT { new := AGattrib };

because “new” is not a run time attribute. Similarly if “Units” were a run time attribute, the following would
be an error —

E1: PID { PVQUnits := 'Centigrade’ }

An attribute can be matched to a CDL string in a VAR REFERENGCE. The reference string can contain the
@ character to allow attribute access. For example

VAR REFERENCE
X : STRING { ref := ’'R1:PID.PV@Units’ }
END_VAR

would access the attribute “Units” of the PV parameter of the PID resource level block in resource “R17.

H
¥
=

DEvIATIONS Frowm [EOC-1131

13 Configuration

This seclion is nol completle

14 Deviations from IEC-1131

This section is not complete, The deviations from IEC are under review and will be corrected if posstble.

The following lists where IEC-1131 supports more than CDL.

i, There is no support for RETAIN data

9. The set of built in functions to be supported as described by IEC is not yet incorporated into CDL
3. Time literal format does not support floating point time format, or underscores
4. There is no support for hex and octal literals, (This will be provided soon!)

5. Binary literals can only be assigned to string types

6. Integer types can only be assigned decimal literals

7. Keywords for time types {TOD, DT) are not supported

8. Structures and derived data types (other than function blocks} are not supported
9. The default start date for time types is 1/1/1970

10. There is no directly represented io

11. ENO and OK outputs from functions are not supported

12. Globals and var externals are'not supported

13. Constants are not supported

14. Function blocks as input, in-outs or outputs are not supported

15. Only a subset of action qualifiers is supported

16. The Configuration construct is not supported

{7, At present only one ACTION 1s supported per step

18. There is no default for an ACTION quaiifier

19. There is no ACTION output p:‘iramef;er

20. EDGE is not properly supported

21. No defauit values for function parameters are supported

22. Function parameters have to be given values
The following lists where CDL extends 1EC-1131.

1. Cold start values that are expressions
2 Initialisation of function block instances

3. Var References

I TEEET

DeviaTions FroM [EC-1131

10.
11

Services

. Attnibutes

Inter-block wiring in Resources
Wiring statements in function block instance declarations

Wiring of function block cutputs

. Specification of target for a task in a Resource {TASK X ON target)

Actions that are SFCs

Extra data types such as QTIME

.___;OOQ.;.M__

ST R

