

ADVANCED AR WRE DREVELDFMENT

ER%QN“BRADE.EY 747 Agho Drive, Highiond Heighls, O 44143 USA

A ROCKWELL INTERNATIONAL COMPANY Tl +1 216 64 3410 FAX 41 216645 51172

ESH/WGT (Christensen) 4
1992-01-22
Mr. Jack Sheldon
International Electrotechnical Commission
3, rue de Varembé
PG Box 131 - 1211 Gepeva 20
EWITZERLARND

Dear Jack:

per the agreements reached in Eziﬁ@trg in November, I aﬁ~énmlasiﬂg a camsra-
peady copy of IEC DIS 113:i-3 for eclroulation to National Commmittess. This

includes all final technical corrections made by SCSSB/WGT/TFI at itd meeting

‘in Fribourg, a5 well a3 all the =diturial corrsezions noted in vyolir madhup

copy of the unnumbered #5B(C.C.) working draft, widch I oam returning herewlth.
As we agreed, vou will produce tiue cover sheet (page 13 for circulatiog.: -

I am enclosing a diskette with all of the working files for this docuwent in
Microsoft Weord 2.0 for HWindows .DOC format. Also on this diskette is the.
document template IEC1i31.DOT for this document. This template is wery ad
hoc: in . future you may wish to publisn on diskette a standard template for
preparation of IEC Standards, In sueh a template, you could Iinclude style
definicions that would make it eacier to produce documents conforming to the
ISG/IEC Directives. -

0do Struger has forwarded to me tie French translation Irom Myr. Durand. This
was cquite an impressive feat in such & short time! However, I note that the
french document does not contain the final formatting and technicsl changes
(as indeed it couldn't, since I nad the markup copyj. In ordersto expedite
the approval process, I recommend” that you issue the French tramslation "as
is" with a note that it will b€ updated to agree with the English text when
the IS is issued, if such a procedire is permitted.

Thank you for all your help. I Fope that the publishing of Parts 1 and 2 is.
proceeding well.

Sincerely,

James M. Christensen
Coordinator, SC63B/WG7/Task Force 3

encl

cc: Q. Struger
L. Farson
J.P. Durand
E. Tarchalski
SCESB/WET /TP members

.2- | IEC DIS 11313

FOREWORD

This document is Part 3 of IEC Standard 1131 for programmable controllers. The current status of the
various Parts of IEC 1131 is as follows:

Part 1 - General Information (IS}
Part 2 - Equipment and Test Requirements (IS)
Part 3 - Programming Languages (This Part - DIS}
Pari 4 - User Guidelines (CD) : _
v e Parts - Messaging Service (CD) - : _ AP
This, document was prepared by Task Force 3 (Programming Languages) of Working Group 7
“in(Programimable Cortroliers) of IEC Subcommittee 658 (formerly SCESA/WGE).

Arinexes A, B, C, D, and E of this documnent are normative. it is anticipated that, as industrial practice
matures, a normative annex H will be developed.

A Type 2 Technical Report (TR} will provide “pre-standardizéﬁon‘ guidance for the impiementation
and application of the programming languages defined in this document , including such issues as
operating systemv/program interaction and requirements for programming support environments.

IEC DIS 1131-3 .3-

CONTENTS
Clause/subclause Page
E TR T2y =1 FOUUU U U T RS UP TR PRSI PPPTPI R ST TT BIEE 8
1.1 SOOPE o iieeieiererrreeer e b sr et oA RS E eEEeaeRE ELSE £ S RN S R SES b b s 8
.0 NOIMTIEHVE TEIBTEINICERS . o ovvereerrriiecoresercseseincssrsarsaeassrasasessrsncniatisssornrusesasaoneiesissasatnosssncssstsantsssamsssssns 8
T3 DETITUIOIIS o ot vereeverscerresiaserirnsrrerreaasarseraaraesrraarare s a st tasoonambeeITesTrrbasntne St T eSS ra s a b RS S S e b s e n b st sEs .
1.4 Overview and general FEQUINBIMEMMS ciiieiiniiriss s reeenorse s b st e s essnnn s i3
4.7 SOHWEIE NOTEI . et e iiieeeetieiisiieesecrerereeaststerateeessessamennes shabLLRs PO arsraaserants s EERE RS ESa b aEs h et yaanasn st 14
1.4.2 Communication MOTEE.......cci e it s e sa s ss eeeeerereanrsestsesressneeien 14
1.4.3 Programming model......... eeeetetsesbeesissstssseseessEeeeseaSeLiEseRRSIvIEESSOTITesbSe IR et Reaanteabie : S, | -1
1.5 Compiliance....... iveeeeteteseerertaeesianrrrrRnTasae e iseeneareaaeriTesssiiassnrrnnsearernrarrssiiesasaras evvend .20
1.5.1 Programmable controller SYSIemMs .. c v RPN L) -
1.5.2 PrOGIaMS ..ooiiiiriicvini ettt s o erreeeee e nneaeans rereeeeesessin revireneeserianss £8
D COMITION BIEIMBNLS .. ceeeeeeeeeeceis e eesseseressarssesessass e eamessssn s a8 eass sbenarn e b smnoadsassnsannene rereneeeriionens 23
2.1 Use of printed characters SO U U U PP OUURTRUPU OOV OOT <
D 4.1 CRATACIET BB cvvrvveeeeiiieeeeeeessassesmesetesearsesats s smeaasssssbea s s e rsr s g a s b st s e s R a st rreveeraenentenene OO
21,2 IOENIHETS et oieeeeerassaeaeseasees s nersessssasmaesaneensens pevereenrebeareereenaeanerannneass ietreeieesierereetssannens 24
2.1.3 KeyWordS .ooverrreccesiciesisninniinnes vessteeteesseasstsssneessaaeesaseerresenerssarenieiits SRS UNS SR .25
2.1.4 USE Of SPACES ...ooovveieericiiriee s LU SOUUE AR OPR reeeenns e 25
D 45 COMIMIENNS +oovovseeesorsessssessemesseesesensasssess s s hss s s s s e e s st e s s e s emb s e s b AT h AR E SRt bR R 25
2.2 External representation of GatA ... 26
D 0 NUITIEIIE BTAIS 1 o ieeeeeeeeeeevtserereeeetissrisenstsarrreeesoiatssaana s e e e ae s he bt e e s b ae i T e e b s s e s e n s s m st 26
2.2.2 Character StrNG RIS ...ovvveeeirciiiitcerre st e psa s et s 27
D D 3 TUTIE HLBIAES cooeeeetvieeeeeeeeeeeitissaneessseenaneeestesbas s sastas b b TPt b e R b e e e e RS e s a e e e s T e bR R e 28
D D 7] DIUTEEIOM o oneeeeiesevseeeeaereeaatssasssesassaeaneereneseiatsshaiatbrs s bb S e bR e Eaamn £ he s o E T s b s R e R R T e R e R e n e d s e s 28
2.2.3.2 TiMe of day And AL ...c.cceiiiiiiiicrmrm e s 29
2.3 DA GYPES correriverremeeeeeseeeestnsisres st st h et R4 E ARESEE e A T 28
2.3.1 EIEMENArY JatA TYPES ...ocoeuiiiiiieeirareies s rrs bt e sa e A s 29
2.3.2 GENEHC QALA IYPES ...iveorereuctreerte it res et s e b s r e e SRS 31
2.3.3 DENVED Q1A TYPES ..vevereeceeeierereerrronrrermeses s srsssass s s b E e eSS e 32
R TR B0 = Yo = 1211 = 12 PUUUUUUTR U Uy P N OO OO PP PRI PRV P R PRI TR L SRS LRLLL I 32
R R - B L T T v 11 o1 WOTUUTT TR OO RSP STTPPPIIRSDEOTIRRRRN reeesmreressereraan 32
2.3.3.3 USBUR -oorevrereeiiruremesasisass s s R e 35
D A NV BIADIES oo coeee et eeee e sttt essaeassranneeadbesaaaE e b E e s e e aA b e e eSS TR S SRR s b e e 36
2.4.1 Representation... e eereseseasr et as A sastsae s e e s s e et se et ee b bR e s s e rnen s en OO
2.4.1.1 Single-element vanabies .. 36
2 4.1.2 MU-CIEMENT VAMADIES...cceirveeescrcercrtisre e ser et s nesber s sh s s e s s st s s s 37
D A2 IHIAHZAIION ceveeveeeeeeereseeseessesseaeesssrtarerrvasasaasersee s s e r s s s s b e A e s A e e s L e b oSS E S STt 38
D473 DECIATANON.ovvs s seessesemesesessssssessssesssarsssssesssteasess sEERre s bR eSS s haa R OO
2.8.3.1 TYDPE ASSIGMITIEML.c...ecercurimsesesrerreseetsassssr s s sa e E L ea Lt 39
2.4.3.2 INitial vAIUE ASSIGNIMETE ..eveuriiiririiterreiri et or s sttt s st 41
2.5 Program Organization UNMIS........eieersesesseassissasssness s sttt b s 43
2,51 FURGHONS ... oveverscanerecrisceesssssssmsssesssssssstesesas s s AL B A 4RSS 43
2.5.1.1 REDIESENIAHONcvetrsereeacriaremssnsanar s e sss s s s R s s A T s LIS s 44
D5 1.2 EXECULION COMPOL e eurireiiisteiesiesaarercerssestsaerirmsebaatass e s et e st e R s et st E s e e e s e s e et s asasbsasrerstanses 45
D 513 DIBCIAIAHON . eevesveesetieseraresneseasensasesssas e saaasss s e arr s e s e A ST b oA e e s LR e b s SRR R r e TR et s b 45
2.5.1.4 Typing, overioading, and type conversion............ P USSPV PRSPPI 47

2.5.1.5 S1Andard FUNCHOMSooreriiereiesieriinararess et s n bt et et na Lt bbb st 49

-4~ IEC DIS 11313

CONTENTS (continued)

Clause/subclause ; Page
2.5.1.5.1 TYPE CONVEISION fUNCHIONS 1...ooieicvirereceerrircteraeecrsteeesnesassessssassrmsassessrestabsnsasssesssonsesssossssns 50
2.5.1.5.2 NUMENCA] FUNCHIONScuviiiieiiiiiiriiinieanseirrenverstenessesssessiesentosssssasantaesnasss srssssnsansesnsasssessnens 52
2.5.1.5.3 Bl StNG JUNCHONS .coieeececcrreerviccereressreresare s reearerecessesessranmannsstessnnssasssnssnsons snsoresensens 54
2.5.1.5.4 Selection and cOMPArison fUNCHONSccoeeieerecrnriearsesstressesassressnssntssnesssrsssarsessasssssssirens 54
2.5.1.5.5 Character SHNG fUNCHIONS ...c.ccveirirrrerrrissusrsrererrssseensssessmssssereassssrsiossiemmnessnnsossssssonsssssns 58
2.5.1.5.8 FUncions of {imMe Jala tYDBS ...cccvveveciccevrnsrerrrresverstessnnesisonsssoonossasasassasrossescrssnsussssesassaseses 5
2.5.1.5.7 Functions of enuMerated Gata fyPBScoceerrrrerrnrrnirinnscossisesenesmssnsasstsesssssonsnnassassnsessasnes]
2.5.2 FUNCHION DIGOKS 1.ovviiirierriierrceecisssscesrstsisvarssseresarasssasaserssnes soasavassbrstsssbanenstissstesmrenssassssnesenssesnns 61
S 2521 ROPIESONAIION . ..o icceeciiee st reery e sess et st s sacasan e s aneseasses rae e aeent e rne e asaaartre s maarenner e nasanran 61
2 28,22 DBCIATALIONcoeeeeeevieieceecciteeceersce et st ie e teea s csesa st s essnsssteaasasasrere s s ensnreaceesne e sasepaneasnneses 63
2.5.2.3 Standard funclion DIOCKS ..o e ssccrressreasscssvrraserrrocssessanesss s sanssmmaeesnamsnesssmne s anssnnare 70
2.5.2.3.1 Bistable GI@MENTS ... vttt v aser s resnseers e e s e s st s saerbesne s da s e e e e e e e rerrnse 70
2.5.23.2 BEU00 GOECHOM .ioviieeeeeer et ecr e es s s h e et st e e be e s st snsaernssenreerrateeresneeth 72
P2 e S 0T B o) = 73
2. 5.2.3.4 TIIMIBIS e vieiereoctasiorriaseresrars st eerrnrsrrseisserarata s an e r s s e e serseanaTe s A e TEA O R PR RA S YA ISR ERar R s R TR e e r R e e rR reree 74
2.5.2.3.5 Communication fUNCTION BOCKS.......ei s sessees e nar e brmnr e s rnes 78
2.5.3 PIOGIAITIS 1ocvveveiiisnnerisrireee s ror s rnrer s s assssnrassin o e e sesnne e e s as s e e b eaba s s A bR E RS e b bandsuranashmrmnrarrannrssbnrbes 76
2.6 Sequential Function Chart {SFC) BleMBMS........c.ccee e recrecrereerrer s arsresesssssre s sesssnesresnssssassnns 77
2.8.T BENEIAL .. ettt ee et e eSS4 e s et e e s et eeran rreeanrrrntreranes 77
2 B2 BB s e et et e e eee et tes e ae e e tba et teta b breeeabeseanteaabeaeantesbeteanreiasteanteeaareeasarasnnrerasens 77
2.8.3 TTANSIIONS coiiiiiiiciicircrer e crrerrrer e essss s vt e e s s srsar e s s e s anasse s s rar e s e esassaseesasessnmseseransarensasaserassarasanssnss 79
2 8.4 ACKHIONS .eervrerrereeereeeeeete vt s veanea e e s e easasbe et 1eias e e b bt s e e antnsrabbe e atAtassbe it teeantesasnsraRaesrAsr ansorentas e ntennen 83
2.6.4.1 DECIAIAIION .. oireeeier e s e ce s e s e e e ressaras s ae s r e s e v evatar et e san et v e eaa e s nn et een s bans senanraanbesrenetaans B3
2.6.4.2 ASSOCIZHON WITN SIEDS .ot cceare e sen e s seec e srnera s e e s ean s e e e sme e e e enaserenssanas 86
2.6.4.3 ACHON DIOCKS ...t ieiierrrieeerrerrraesseerssnsararasesssessssess et e s sreesessasassesssensntaernsessasredessssaasssssssnssssnnen 87
2.8.4.4 ACHON QUAHIIBIS .ottt s e e e et s s s 88
2.6.4.5 ACHON CONMTON ..uieiiric i riccsrrmeece e ssrrs s s e e s s s ans e s e e s rar e anessssassreeesssarreensaanssnasnsnarnesssnuns 88
2.8.5 RUIES Of BYOIULKONeoviiriiicecrrrecnr e rre s essr e st nnrt e be s s bbbt 44 s s s rttbensesnnnsnnasnressrnmnsrertessaranns 3
2.6.6 Compatibility 0f SFC lements.. ...t ssetrsssssassrssstnsasssssasssen 104
2.6.7 ComplianCe reQUITBIMENESccivivrrsirerecirrrair s it eeeserse s bvsssnsrssnrtee s istsssasasssseenressaneesnessursrsns 104
2.7 Configuration BIEMEMS. ... e s e 105
2.7.1 Configurations, resources, and access PatNS.......ccvcceerriecinrrrieenrerereenirereererea s sessessn e s sons 107
2.7 .2 TaKS coerriiiiiiiiei ittt e s s e st e st e e s b r e e e s b n e e sseantsvanbasartbanns cmsrbnsennsornttansssrssnsansnsass] 1O
OO R = o CTE TRE: T ol Ve L OSSOSO TUPN 118
3.1 COMITION BIBIMIBITLS .cvvvvevermirrreeiirerisssasserssessrnessrsserrsssassssesessnssesssassssnsssssssnesessansssstenssssnsssatsssnnees 118
3.2 Language 1L (INStUCHON LIST) ..oceiiieeceercectiiireriss it re s e resre s s seesare s s e s sanesssassressanseresnassamseeass 118
321 I BIUCTIONS . et te i e cccrrrnrtrressssssnbbasessassraresss s atasses s sannassssssnnenersntsnessbsbentnmrerissserrasonnsbbnssnnrassns 119
3.2.2 Operators, modifiers and OPErands.........ccueeiirrrnininriiinters e sene s ssssssnasnsssasensssressssses 119
3.2.3 Functions and fUNCLION DOCKS........ccccirrr it issiiens s rererrcreseersecasse s sassssessassessnsssnansnnsaranes 121
3.3 Language ST (SIUCIUIEd TEXE) ..cvvvereieecniiiiciiiis s s stsstassesr e rassssnssressessessessassanssssossans 122
3.3.1 EXPIBSSIONS. . cveererrereesrerssasessaesseesasssseessassssascraessnnnssssserararessesassas cresssasns 122
3.3.2 SAlBIMBIES. . ccverirrerrinrerrrnsrsresneessrnseste s seesnrerare ddsameme st s s sabbeeaneenansreravaraeesasesrrasesseseansnerrbasesits 124
3.3.2.1 AsSSINMENt STAIEIMENLS ..ccvvecc vt s s s st as st s b e s st b e v e e e s b erranesrbsssnan s e nsrans 125
3.3.2.2 Function and function block control StalemeamtS..... ... rreer e ceere e rssme e ervevessaenenees 125
3.3.2.3 SelaCtion SIAIEIMEIMS viereeeeerreereeneerersassrrierenesssrssartsasessstnresssersasessessnsnsessessasssannestesssess 126
3.3.2.4 Heration statements.........cccceveeenn, e rmueat sk et et eSS e n A 44 e et 126
4, GraphiC [ANGQUAGES «..ccorvierieerrerrrs e s seas st rse s e b st sas e sttt e st e e e ment et eernt e st e s aesE b 128
4.1 COMMON IBIMEBMTS ..ottt eeeers e ts st b e s e atteeses s s e esae s ssnseersssssesasnrananbneeessrnaeibass 128
4.1.1 Representation of lines and DIOCKScoo i 128

4.1.2 Dirachion Of JOW N MEIW OIS . oo iieiiirieeer et emrnesre i reesassetnnaranssesenrtasarerstssersassessnsansnassanney 128

[EC DIS 11313 5.

CONTENTS (continued)
Clause/subclause Page
4,13 Evakiation Of MEWOIKScociivcerereeeerererecreseessanneseeesrsmeebesatsssasasssssabessnesransassssssassessssmnssinbnsas 130
4.1.4 ExocULION COMIOL BIBIMEBNTS oo vevrieereciirrenerrereennusrss s ra e res s as s s s b s sasaressnananss s nasassmrnannasans 132
4.2 Language LD (Ladder DIagram}ciorermmmnrrriscceeccrrrensassssessessronsnsnss sesmasannss s sessessences 134
4.2 % POWET TR o iveeiireceee vt issteeveresr s ressessser e aerrs s e e et e e e nenr s et sk rbART s EE R A S e PR RS YRR AR AR RS T SRR TSR ER AR T RN 0T 134
4.2.2 Link elements ang S1aIES. ... cciiirc et rre e s eebasbe s s rs s s saa s s e e n oAy R e b O st g R e e nn e 134
B.2.7 COMBOIS o oeeevtieciriteteiittesssscssaeanessssismsaas ssnneresanensttnsbebentosnsnainssssmtcsrsrorbonansasast rerasseasasaannsnonsans 135
.24 OIS oo eeecevesteer i resreeearenescaestate s s ran s et easstses manen b e b LR SRS E RS AR TR RS R S S C SRR AT ST RTS8 0 135
425 Functions and Junction BIOCKS ..o eeeserecseeseeneeesrabtasnteessesnreannreesniatpinarss 135
4.2.6 Order of NOTWOK @VAILATION . ..cicccvverreeeersenrrcosssssecmssioresstasassssssrrhsassatassssrsssnsbossssosbishbtsssssssnss 135
4.3 Language FBD (Function Block DIagram) ... esssnscccrssinsssnsncsnnees 138
B30 GENEIAI..oeooreeeeeereeocb et s sbesassses s easssnsessenns e sa s sse st s bbb s s Y
4.3.2 CombDINGtON Of BIBIMEMIS . .cciiceeieiireerirrsueeeaveseerreesiereassiase s rerrrnrsorapasseasseranaavaasosossbrssssianssenes 138
4.3.8 Order of NEtWOrK aVAIUALON .o s s s s b a s 138
ANNEX A - Specification method for textual ianguages (NOrMative} ..., 138
AT SYIIBX 11 ivveereiieeeiietests et ee e s cesa s b st s e s s r b e e r eSS eSS 139
A1 TErMINGI SYMBOIS ..oovvt ettt b ss s ssa s st s esne s ae i sa s bbb s a s s s T ey s n st s s 138
A1.2 Non-terminal symbols ...occccrviicinnnnn rtrtrtsseeneeeessntnesarseaasnttyisesantesessssrrrnnnraens 138
A3 Production MUBS.....cccerierceernensre e sise s v rrresennenssanssnas et eeesseeeanrersreteviastessenesrasananersrbessatens 140
B2 B BIMIABIICS treeererrreseeeiseessesssreabesssnes v rresaansessaree ik s eaar e ar s onRe s e e aa e s mEra T e st e e area A e bossE Rt e iR n s e s e s 140
ANNEX B - Formal specifications of language elements (ROMMative)cvvminnninnicsiiisnns 141
B.0 Programiming MOUE!cocveerrieirimirinir s sissnssies s sb b eab s by 141
Bl G OIMITION B B IS «ooeeeiieeeeriteeeermreeeratttasasasseraraeae e ren et et A RS RS a bR E T es s m s s e nan ey b b AR O e e e s b b e ma s 142
B.1.1 Letters, digits and IdeNIfIErs ... e 142
B2 OGS 1t veeeeeaeieeeaseeescesasnsssseassessassanaassssenssararsassb et stasserararassssntesanasnebost ssatenessnsnssasansranns 142
B.1.2.1 NUMEHC IBPAIS ... eeeeeeereeeeicirrseessviritisessirsressesissees s sasas s baE essans emTaasam s sesb s an e e e sssbrbrts <. 142
B.1.2.2 Character SHAMGS ...covivierereicsisinsseis i therbsstasta et st s s e e a R s a s R e s s s rn s teaaas s n s 143
B.1.0.3 THTIB IHBIAIS ..ovvvveressereseeerneeessseesiseessasonbibtaessas nsanarsrasees saitiisnstasssssisssnssearssntessstssssrsssesssnssnsans 143
IR I T 0T Te- 117 1 DUUTEURTETUUE OO O UV RSP PPPT T 143
B.1.2.3.2 Time of day and Qa1coccrvieiiiiiniiiniinsie st st s 144
B.1.3 Dl IYPBS cueveeeiirierereesciecen e b e A b s eSS S s s 144
B.1.3.1 Elementary Qata IyPeS ..cccoeevimiimiiiiniessssssssis et sttt s bbb ara s s s s s 144
B.1.3.2 GENeriC Q1A YRS cccvereirrrerrrriisie et sttt st s n e s s s b e sees 145
B.1.3.3 Derived GalA TYPS .cecrrerereitsericresisisrarresbossasassassatasass e s rosrdsstshtba s as e sa e st s s s as e s san s aat s neess 145
B1d VANADIES oo oovereeeeresieseeseersssessnisssesiasseaessssaeasaetsaant s aess s ersraasssseasnsssrraresaesaosanaanaannsassasatsssannsisany 146
B.1.4.1 Directly represented Vanables ...t s 146
B.4.4.2 MU-BIEMEMT VATTADIES oooivvrreeireerrriceasnireerentstassssassstssssnssassesssneant ssassstsssessinesrsnteassnsessenaes 147
B.1.4.3 Declaration and iNIEHZEHON. ... ccccireirrirenresreersisssssssrasaseasssstersressssssssssonsastsassnsssassssssssnens 147
B.1.5 Program organization UNSiceeieaeerimrssssissssssnsresinsssness ittt en e s bas 149
B 1.5.7 FUMCHOMS. ... eveveeseseeenssessesissseesnesssessessasaseeasarastsssrsssssassssssnanesssssnessssressetensinrressbtstassnsssssnnnss 149
Bod 5.2 FUNCHON DIOCKS . eveeereeeceeartseserirssssessstesssmsessssstsesinsssinnssassannnsssnantssssssssisssssnttsesisssesesassssssmnns 150
B.1.5.3 PrOGIAMIS . .oveueusiecseoeesserrrressssssssssan s saesaseisisessen et e r s e e A s s e s et sn 150
B.1.6 Sequential function Cham BIEMENLS ...ttt s 151
B.1.7 ConfigUration BIBIMIBIESiversessseisrssacrecermtiisstsn et st 182
B.2 Language Ik (INStrUCHON LiSt......oivreeeeirs ettt sttt 153
B.2.1 INSIAUCHIONS ANA OPEIANAS . ..covvviriaririrsrsrnreiere s rist it s s a bbby bt b bt 183

B.2.2 OPEIAIONS ...cuerveemcmiictii et bbb e trerienrn e bae s e et aa e nneaeites 183

B iEC DIS 11313

CONTENTS (continued)

Clause/subclause Page
B.3 Language ST {Suctured Text)........ccviiiisieniminsnmeinesissnenestsssssssssseseisnssns s nsnsiasnssas 154
B.3.1 EXPressions.....c.eeenreennvaranens evvetiiesebiesaeenesreeseensessrerarerebRetaR AT Ae SR SRR ARt Lt d s et b bR seete 154
B.3.2 SUAOIMIBIES ...eoeeveeoectirieeeeisoresssismncisssiossscsssssnessassrerasassasastasertssasssssossasstrssnsssssasnnssssansasarssssas § O
B.3.2.1 ASSIgNMENt STAIBMENTS....ccoiiiiiieiiircerinaiiirsssnes et srrssinens s s ssaesbe st sansassanssasassas st nsnas 154
B.3.2.2 Subprogram COMrol StalemenMtS.. ..o veiiiirmierecsarreeser et s sssasessssnssscensarsessensinsmsnsasenss i85
B.3.2.3 Selaction SlalBmMeiS. ..o ceeereirierrrrecerevosresessessarasmsbsst sassisrsrasesesasnssesnscsacsanasesorsasonsasaresons 155
B.3.2.4 Ieration SIALBIMAMIScvverveersrerecaseoiereersassstsassrsssnsonsessinsssessssistssansasesensont socornossssssssesssnsosns 155
ANNEX C - Delimiters and Keywords (nofmative).........ccveeeennneccnsinnennnennnnns evomseesssterasesaeranran 156
ANNEX D - Implementation-dependent parameters (NOMMALVE)ccooevrmencnsiisosioeninsnninns 160
ANNEX E - Error Condilions {NOMMAHVE)coovuiiirieciriiee et sissnisseesssasssssnsassssanssarnssss sbssssssnnes i62
ANNEX F - Examples (infOrmMative] ...t it rscnssencensssssssstnassseosennsnsnessessans 163
F.1 FUNCHON WEIGHM oo iiiie st tseeeeesenresaessaesaesrerstssmtsrbeasarsessbosn e sbe s ae s bn e s s m e eabrbntonsassnnssassnss 163
F.2 Function biock CMD_MONITOR ...ttt esss s e ste st n s ssassessisssesnssns e e es 164
F.3 Function block FWD_REV _MON ...ttt issssa s s s s taans s e g anss s 167
F.4 FUNCON BIOCK STACK _INT ..o er et s s seests s es s ssssbaressss s ssb e s s et eabsasa sbnbastssnassssnnasns 173
F.5 Function BIock MIX_2_ BRIX..... oo riimensensaiss s tssess st e s sesansnssssssssmasessessnsnenesss 178
F.6 Analog SIGNal PrOCESSING. . ..c.coiviiiriiiiiiiirssrs sttt s be bbb s a s b d s 182
F.6.7 FUNCHOMN BIOCK LAGT ..eiiiiiiisisvrcrceciicciecacnnnnsamseersssessasarariisssssiossatnnanssnssssosssorsrsseasassssnnaussniss 182
F.8.2 FUNCHON BIOCK DELAY .oviiiiveeiiieeiritevesessreestestsstssseassesssinssssesssssssssasisssarssnsssbbssansassessnssnsssnnss 183
F.6.3 Function block AVERAGE ...t stsessesesseestsbsrb s st s sssassan s e s s esnssnesasssnssesssss 184
F.6.4 FUnction DIOCK INTEGRAL ..ovevececiecr st cenessscncre st ssbasssssas s ssss s s e anesansnesesnstn et sase 185
F.8.5 Function DIock DERIVATIVE ... crerssee e s ssasnsss s e sssassansssn s sssssssanssbssssansanss 186
F.6.6 Function Block HY STERESISccccceceeeiriereeriesrcenesssis e sensscsssesrassssssssnsssatessssssnssrnsssssssessnenss 186
F.6.7 Function BIock LIMITS_ALARM......cccvrriviereerrcmsisisisssnsssiassssssssasssnssassssssssnsssssnsnsassseasens 187
F.6.8 Structure ANALOG _LIMITS ... b s st ae s s s s b as 188
F.6.9 Function block ANALOG_MONITORccconiitiimiiinrcnisnrersssssassaassasnnsasssssasssssasessssanens 189
F B, 10 FUNCHON DIOCK Pl o oot etiiissesteeas s snannnsrat s rassssbtonsr e as s st s an s sea s aaasbsbansansnnrreseeriteneanns 180
F.6.11 Function block DIFFEQcoeerirceiees Lr4ttteteereeeteeeeeeereeerionaatrrieteasesetastsestrrtsstarEERREEsResaeaRaary 191

F.6.12 FUNCHON DIOCK RAMP ... rcecteecaistessssssssssestessssnssssenesssssssessnensessasssssesssnssesnssssssasaee | G0
F.6.13 FUnction DIOCK TRANSFERccoierieirecrsiesersrsssessesssasessssasasenssssessssassesasssessessssaseesassosssnsass § 90
F.7 Program GRAVEL......ccccoivriiiiinisnnesntsssisss sttt snsss s s ssmsses s sasarsisshsasasas tenveesmarns 194
F.8 Program AGV eeestateseeseseeseseseessitssiessEesseseasesssrasieesiavAtEeseetesteteseretesensisaeiessesetrasssrsrasetserens QO

ANNEX G - Index (infOrmative)coiceririnmiernsisnes st bttt snsntenssnses s sssssssasessansnares 207

ANNEX H - Software compliance testing (informative).........cciiriiniicreisencse s 220

IEC DIS 1131-3 .7

LIST OF TABLES
Table Page
1 - Character SBEIBAMLIES ..ot cer e sne e e sssstssistss e s s stm s s s bas e s e be b aa e v senarasemensasens 25
2 - Identifior fBAUMESc.ccee it s e eees teeesnerersrrerosesesesreasmisrearetiase 25
3 - COMMEME fBAILEc.cviieiriereniei et esssses sereresesressstesraas et assessssssesessesensesssssnssessrssssenssustrsesensansnns 26
4 - NUMBNC HBIAIS ...ttt e e b et e e ae e e s s e s e e nmssasaras s snesn st sanssaserans 27
B - Character string HEral fBAIUNE ..o e rereesar e teese et et seeebssssssssssssssarsenssnssasnss 28
8 - Two-character COmMDINGLIONS iN ChAraCter SIMNGS.....ccoecarvrrerieer e csrnieterancressasnasasnsressssnsasnsssose a8
7 - Duration literal features........ccooverinreveereeccennrene e SOV RO Pt
8- Date and time of day MEFAIS........ccccce it ris s ere e st sss e rasnsssensestesssanrsssssensanns R/t
8 - Examples of date and ime of day MEIAIS ... ereresssneseressrssssassissessssasasronos 30
10 - Elementany Qata tyPeS . .o ceree et e s o ssssaesaseae e sre s s e et e e enrannnesae s e s enbanen 3
11 - HIErarChy Of QONEMC ol DO . v rrecrceeririrrerrcrrerireresissees sosssannanssronssseesossannesssranssasarssmeasssossnes 32
12 - Data type declaration fRAIUIEScuiviiiirririerccrensieeccessnesrassaressessnesssessesasscnnssanssssasassssrssmassasesns 34
13 - Default INAl VAIUBS ..o rcrrserr e teese e e e s se s s ssa e s aeecaneseseeaevasse s ssessssnnrnns 34
14 - Data type initial value deciaration 8atUIES ... ree e s e erenns 35
15 - Location and size prefix features for directly represented vaniabiescccvveveevccnvenccenceenennene. 38
18 - Variable declaration KeYWOITS.ttt errc st s s es s e sssnesseesssrasasssssessasessasssssessesnses 40
17 - Variable type assignment fRAIUIESccov i st cee et s e rie e s iae e ra s s rae s s ansrrane s nrenns 40
18 - Variable initial value assignment fBAIUIES ..o rasrerae s s s s anererae s nens 42
19 - Graphical negation of BoOIEan SIQNAISciceceiirreceereerrrecsrrar s ssseresssersnssarerssrransrsssressssrane 45
20 - Use of EN Input and ENO OUIDUL ...t ceiictnrscrer e ee e eesssversssas s v sescssassessseesnsnsensansansnes 47
21 - Typed and overoaded ﬁ.mctlons TS PR RSOORRPURRORY - .-
22 - Type conversicn function featu:es AL E RS Sa R4 St S s e et s rbndb e ranrensnreereres D]
23 - Standard functions of one numeric vanabie eeieeeseseesmreeesreretereseassenteesnrtriasabnteessasbtnreeasbbreeesatee DO
24 - Standard arthmetic fUNCHOMNS ... rer i aersrassss e sassessesssessnssrasesssasonnersassnsnans 53
25 - Standard bit Shift FUNCHONScciiii s sssssest e rss s a s s asssnesttsaasansan 54
26 - Standard bitwise BoolEan FUNCHONS........ic et rrce s s sae e rnaresseressseress s v e sstasasnsnssasns 55
27 - Standard Selection TUNCHONS ...t rrerar e s srecaererase e s s s res s e eesaasesansanssesesssenessnresantes 56
28 - Standard comPaniSON FUNCHOMScevcvvrecreerreecrierereteseisaessresesesseessresesesesssnssessessasaesesssassresess 57
29 - Standard character SHNG fUNCHIONSv.vvecveerer e ececrreesereseccreraereersressnsssntsersnressratesaresnesssessvasons 58
30 - FUNCHONS Of tIME a8 1YPES ...cviiiiiiiiciricie et s e ar s e s e e s e sn e e sa s e e e e ss s sneapanas 80
31 - Functions of enumMerated data fYDeS . oo rrrrsreorrre et eecrraesee s ssreesrarnnersrssaresvernaressssrresesssrresss 80
32 - Examples of function block VO parameter USEEc.ccceiveiniereeerinineescsninessssscasnssssressseasesseons 82
33 - Function block deciaration fEAIUMESc..ccviemererrr e eerreranscemsesesecesnnscsrssssssnsessvasees -65
34 - Standard bistable function blocks .. S OO P PP OTU U UOU P URURPRRNETOVSNPRIPROOUY &
35 - Standard edge detection function biocks .. 72
36 - Standard counter function blocks .. reestereereeseesssteeseceesseteseeaassntarraseiseraantariatarannsaane .73
37 - Standard timer fuUnCLIoN DIOCKScciicirrc e reeese s eecrrs s saamee s s o tasesssneassassnsennsessnssaneressnren 74
38 - Standard timer function blocks « MING QIagrams ... s rrs e resassssvessas 74
39 - Program declaration fRAUIES ...ttt rss st rcssns pa s e s s e s s ann e s st aassanerasstsan 76
A0 - SIED TRAIUIES ..ecvvveeerecrieeiteeiiresessaeessarsrestsssasste st s s es e an e e sear s rasaes s aessbeanee b ar e nasbsens e nnnasaessnasasnens 78
41 - Transitions and 1ransition CONGIIONScoveecvciirmnniiniiisi s e ear e e reeeresenreresnesannans50
42 - Declaration OF ACHIOMScciic e ise e st e ma st e s st rre s bane s et e e e anesenaneenssneennte 84
43 - SEP/ACHON BSSOCIBLION ..vvieirreecesrrteecieressesseassnrecsrassesarsasssesssssassncssastessnessnessnsestessnssasssensssssnsornes 86
44 - ACHON DICCK fRAMUIES.......ceee e cerre e s reseesseaarrecsnesaresssnesaommsnaons treseneerareeseens 87
45 - ACHON QUAIIIBIS <.ooeeiiee st iat st sadn s s ers s s r et e b tab s R bbb n b benbeamaee s eaa s enarneraarar 88
46 - SEQUENCE BVOIITION ..evivviveeiicvissessseesseestersestrsiessesssasassersassssseneteasasessessesseessessessssnnnrsnnsansansonssssens o4
47 - Compatible SFC features... reeseerernerraneee s eerete e b st nrmers snaes st esanasnasennasarsssnesnerranase | O
48 - SFC minimal compliance reqmremems ereeeesaeeesieeseaerasaesanrarsestesssaasssrerassasasearsreesssresaner | B
49 - Configuration and resource declaration features ettt ettt e e et et e ra s tase s rraearrnas 108
B0 « TASK TBBIUIESi i it iieceeceeiieeeeceivereesasssraerrssaeeasmrereees e mraesaaaneas e eaa et aasasaarevasranersassasessanssnsssassnnnanss 11
51 - Examples of insStruCtion fIEhSot e e anee 118

52 - Instruction List {IL) operatorscciiiimecrsrirtsmin e PO SR 120

-8 IEC DIS 1131-3

LIST OF TABLES (continued)

Tabie Page
53 - Function block invocation features for 1L [anguage ... e 121
54 - Standard function block input operators for IL JangUAGA...........ccovrceercrcrssssinssisccamersessenrersesssres 121
56 - ST [anguage SIAOMIBNLS ... iiriiirrniriissriressitisr e renst e s st ossasatsssassnste s s sassnonts st sumserasassans 124
57 - Representation of iNes and BIOCKS ...t ccrer rrcesccreaams e s cressm e s smrassna s sanas 129
58 - Graphic execution control BlemMBMS..........c s csrssssssssssensessrssansasssnesseses 133
B8 - POWE TAIIS ...ovecceee e irecssiirrsiees e coes st esssmervacrasauerseesssn b eessesesasvasbenbnesssbnsesbaTessssnres sobtnbbvarsannrarss 134

= LN BIBMIBIES .veiceiiiiiiiie oo eeiesisoneeosenrarasstoranssnnssrsronsosaestorsossnsons e snes komsantesssesssessnessasnarsmosacs 135
BT = COMACOIS .o oviececeeerctee i cessreeessrcscseesarassscassasonssmnsneessceessssrssascesessnsaenans oo rnonesstosasasenreenssesnssnsens 138
B2 - GOS8, reriiiriieeiercrceneererrorceereeaessescue s e r e e st s aesn s s R e s a e b e e e 4 RS RS RSN E S RN R OB SC s R a0 aae e naenreene 137

LIST OF FIGURES

Figure Papge
T - SOHWATE MOo ivrreieerariacrscnrinasrrrerrrnrrerrestaeaasarerseasasssrpaastnesesaseseeaaanessssssantesesasnessrenenssensreneson 16
2 - COMMUNICALION IMIOGBL. ..c\vieeiieeecrieecereintesecicemtescreerteeessseessseesteesassasreeesansasassenvasesraraansiessssssrassasas 17
3 - Combination of programmabie controller language elements ... s 20
4 - Examples of fNCHOM USAGO ..v.iiiiireiiiriiiiereiarseesecs e e s esesaresriressssessresseseesassssoesressstassaserasssnssesnenssre 44
5 - Use of formal paramBlar NAIMES ...c.coviiieviee et rossbesersbs s s s ss s se b e s e bbb e s sss s bassassneos 46
6 - Examples of function declarations ... rrerrer e srae e e s s st s s s e s s ssa e nne s seerenne 48
7 - Examples of explict type conversion with overioaded fUNCHONSc.veeiicnrseimsnineimsmmss s 49
8 - Examples of explicit type conversion with typed functionscoecii s 50
g - Function block instamtiation @XamPleccccevciciicriec e reesecissesere e s sesessennersrsssverseessrrassesss 62
10 - Examples of function block declarations ... i B4
11 - Graphical use of function biock names as vanables.............cccvveeninirccrnninssesssenesseree . 60
12 - Examples of use of input/output vanables.vi e sers s s 89
13 - Semaphore usage example............. teveraetrennsrrrssrnssnsersaanesassssresssasraentessners f O
14 - ACTION_CONTROL tunction block Extemal mterface ... 89
15 - ACTION_CONTROL function BIoCK DOGY ...c..viecimieiierinnescecrimresiasesmeessmesecseesenesnssenesessnsssssnsnsins 90
16 - ACTON COMTIO! @XAIMDIB . vve ettt e e e s s s s s vasss e e a e s sasn s ha s bR R e R R aane e s b abresaranssanaas 9
17 - SFC @VOIUHON TUIBS ...ttt sireesiisire s te et cs e e s e aesses st e s n s ne s asassnesenssesssanesarasssansesasnsrss 100
TB « SFC BITOIS o .oieiciecreieiereenreasstevasstrassses et e s streneeeteeasaressaseasanteeesnsnessassessnnessasmrnbatssbbesssssensssssness 102
19 - Configuration XAMPIE......c...coiiiiiircr s s b e s e s 105
20 - Examples of CONFIGURATION and RESOURCE declaration features.........icccoeeeenevcvviccsnnnne 109
21 - Synchronization of fuNCtION BIOCKS ...t b 115
22 - EXIT SLAtemMEnt @XAMIPIE ...ee et eteecrs st r e s rrsssrne e s s e s s bt e s s srs s e se s mnas s ansanssemearsnenernanss 126
23 - Feedback Path @XamPle ... e rme et s e s e bbb s s s s ne e 131

24 - Boolean OR EXAMPIES ...uvueeeiecceieserrnsiesresiscectcneess s sserecsteriasssssnssasassssssasarsssrssssssasseresrasses 100

[EC DIS 1131-3 G-

1. General

1.1 Scope
This Part of IEC 1131 applies to the printed and displayed representation, using characters of the 18O
646 character set, of the programming languages to be used for Programmable Controllers as defined
in Part 1 of IEC 1131. Graphic and semigraphic representation of the language slements which are
defined in this Part is allowed, but is not defined in this Parn.
The functions of program entry, testing, monitoring, operating system, etc., are specified in Part 1 of
IEC 1131,
1.2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute
provisions of this Part of IEC 1131. At the time of publication, the editions indicated were valid. All
normative documents are subject to revision, and parties to agreements based on this Part of {EC
1131 are encouraged to investigate the possibility of applying the most recent editions of the
normative documents indicated below. Members of IEC and ISO maintain registers of currently vaiid
international Standards.,

IEC 50, International Electrotechnical Vocabulary

IEC 558 (1889), Binary floating-point arithmetic for microprocessors

IEC 6§17-12 {1983}, Graphical symbols for diagrams, Part 12: Binary logic elements

tEC 817-13 {1883), Graphical symbols for diagrams, Part 13: Analog elements

IEC 848 (1987), Preparation of function charts for control systems

ISC/AFNOR, Dictionary of Computer Science, 1989, ISBN 2-12-4869111-6

ISC 646-1973(E), 7-bit coded character set for information processing interchange

ISO 33071975, Information interchange — Representations of time of the day

ISO DiS 7185, Programming ianguage - PASCAL, 1982-08-12.

ISO 7498-1984, Information processing systems -- Open Systems Interconnection -- Basic
Heference Model

=10 - IEC DIS 1131-3

1.3 Definitions

For the purposes of this Part of IEC 1131, the following definitions apply. Definitions applying to al
Parts of the standard are given in Part 1.

NOTE 1 - Terms defined in this subclause are italicized where they appear in the bodies of
definitions.

NOTE 2 - The notation {ISO) following a definition indicates that the definition IS taken from
ISO/AFNOR Dictionary of Cornputer Science.

NOTE 3 - The ISQ/AFNCR Dictionary of computer science and the International
Electrotechnical Vocabulary should be consulted for terms not defined in this Standard.

1.3.1 absolute time: The combination of time of day and date information.

1.3.2 access path: The association of a symbolic name with a variable for the purpose of open
communication.

1.3.3 action: A Boolean variabie, or a coliection of operations to be performed together with an
associated control structure, as specified in 2.6.4.

1,3.4 action block: A graphical language element which utilizes a Boolean input variable to
determine the value of a Boolean output variable or the enabling condition for an action, accord:ng toa
predetermined control structure as defined in 2.6.4.5.

1.3.5 aggregate: A structured collection of data objects forming a data type. (ISQ)

1.3.6 argument: Synonymous with input parameter or output parameter.

1.3.7 array: An aggregate that consists of data objects, with identical attributes, each of which may
be uniquely referenced by subscrpting. (ISO}

1.3.8 assignment: A mechanism to give a value to a variable or to an aggregate. (SO}
1.3.9 based number: A number represented in a specified base other than ten.

1.3.10 bistable function block: A function block with two stable states controlled by one or more
inputs.

1.3.11 bit string: A data element consisting of one or more bits.

1.3.12 body: That portion of a program organization unit which specifies the operations to be
performed on the declared operands of the program organization unit when its execution is invoked.

1.3.13 call: A language construct for inveking the execution of a function or function block.
1.3.14 character string: An aggregate that consists of an ordered sequence of characters.

1.3.15 comment: A language construction for the inclusion of text in a program and having no
impact on the execution of the program. {1ISO)

IEC DIS 1131-3 - 11 -

1.3.16 compile: To translate a program organization unit or data typs specification into its machine
language equivalent or an intermediate form.

1.3.17 configuration: A language element corresponding to a programmable controller system as
defined in IEC 1131-1.

1.3.18 connection: An association among two or more instances of communication function blocks
for the purpose of data interchange and synchronization.

1.3.19 connection descriptor: A character string which uniquely identifies a connection.

1.3.20 courter funetion block: A function block which accumulates a vailue for the number of
changes sensed at one or more specified inputs.

1.3.21 data type: A set of values together with a set of permitted operations. (IS0}

1.3.22 date and time: The date within the year and the time of day, represented according to 1SO
3307.)

1.3.23 declaration: The mechanism for establishing the definition of a language element. A
declaration normally involves attaching an identifier to the language element, and allocating attributes
such as data types and algorithms fo it.

1.3.24 delimiter: A character or combination of characters used to separate program language
elements.

1.3.25 direct representation: A means of representing a variable in a programmable controller
program from which a manufacturer-specified correspondence to a physical or logical jocation may be
determined directly.

1.3.26 double word: A data element containing 32 bits.

1.3.27 evaluation: The process of establishing a value for an expression or a function, or for the
outputs ot a network or function block, during program execution.

1.3.28 execution control element: A language element which controis the flow of program
execution.

1.3.29 f{alling edge: The change from 1 to 0 of a Boolean variable.

1.3.30 function: A program organization unit which, when executed, yiekis exactly one data element
(which may be mutti-valued, e.g., an array or structure), and whose invocation can be used in textual
languages as an operand in an expression. e

1.3.31 function block instance {function block): An instance of a function block type,

1.3.32 function block type: A programmable controller programming /anguage element consisting
of: (i} the definition of a data structure partitioned into input, output, and internal variables; and (i) a
set of operations to be performed upon the elements of the data structure when an instance of the
function block type is invoked.

1.3.33 function block diagram: One or more networks of graphically represented functions,
function_biocks, data elements, /abels, and connective elements.

-12. IEC DIS 1131:3

1.3.34 generic data type: A data type which represents more than one type of data, as specified n
23.2.

1.3.35 global scope: Scope of a declaration applying to all program organization units within a
resource or configuration.

1.3.36 giobal variable: A variable whose scope is global.
1.3.37 hlerarchical addressing: The direct representation of a data element as a member of a
physical or logical hierarchy, e.¢., a point within a module which is contained in a rack, which in tum is

contained in a cubicle, etc.

1.3.38 identifier: A combination of letters, numbers, and underline characters, as specified in 2.1.2,
which begins with a letter or underiine and which names a language element.

1.3.39 initial value: The vaiue assigned to & variable at system starf-up.

1.3.40 input parameter {input): A parameter which is used 10 supply an argument to a program
organization uni.

1.3.41 instance: An individual, named copy of the data structure associated with a function block
type or program type, which persists from one invocation of the associated operations 1o the next.

1.3.42 instance name: An identifier associated with a specific instance.
1.3.43 instantiation: The creation of an jnstance.

1.3.44 integer literal: A Jiteral which directly represents a value of type SINT, INT, DINT, LINT,
BOOL, BYTE, WORD, DWORD, or LWORD, as delined in 2.3.1.

1.3.45 invocation: The process of initiating the execution of the operations specified in a program
organization unit.

1.3.46 keyword: A lexical unit that characterizes a /language element, e.g., "IF".

1.3.47 label: A language construction naming an instruction, network, or group of networks, and
including an identifier.

1.3.48 language element: Any item identified by a symbol on the ieft-hand side of a production nule
in the formal specification given in annex B of this Part of IEC 1131.

1.3.49 literal: A lexical unit that directly represents a value. (ISO)

1.3.50 local scope: The scope of a deciaration or label applying only to the program organization
unit in which the declaration or label appears.

1.3.51 logical location: The location of a hierarchically addressed variable in a schema which may
or may not bear any refation to the physical structure of the programmable controiler's inputs, outputs,
and memory. '

1.3.52 long real: A real number represented in a jong word.

1.3.53 long word: A 64-bit dala element.

IEC DIS 1131-3 -13 -

1.3.54 memory {user data storage): A functional unit to which the user program can store data and
from which it can retrieve the stored data.

1.3.55 message: A collection of data in a predetermined format for interchange over a connection.
13.56 named element: An element of a structure which is named by its associated identifier.

1.3.57 ofi-delay (on-delay) timer function block: A function block which delays the failing (rising)
edge of a Boolean input by a specified duration.

1.3.58 operand: A fanguage efement on which an operation is performed.
1.3.59 operator: A symbol that represents the action to be performed in an operation.

1.3.60 outpul parameter (output): A parameter which is used fo return the resuli(s) of the
evaluation of a program organization un.

13.61 overloaded: With respect to an operation or function, capable of operating on data of different
types, as specified in 2.5.1.4.

1.3.62 power flow: The symboiic flow of electrical power in a ladder diagram, used to denote the
progression of a logic soiving algorithm.

1.3.63 program (verb): To design, write, and test user programs.

1.3.64 program organization unit: A function, function block, or program.
NOTE - This term may refer to either a fype or an instance.

1.3.65 realliteral: A literal representing data of type REAL or LREAL.

1.3.66 resource: A Janguage element corresponding to a "signal processing function™ and its "man-
machine interface” and "sensor and actuator interface functions,” if any, as defined in IEC 1131-1.

1167 retentive data: Data stored in such a way that its value remains unchanged after a power
down / power up sequence.

1.3.68 return: A language construction within a program organization unit designating an end to the
execution sequences in the unit.

1.3.69 rising edge: The change from0to 1 ofa Boolean variable.
1.3.70 scope: That portion of a language element within which a decfaration or label applies.

1371 semantics: The relationships between the symbolic elements of a programming language
and their meanings, interpretation and use.

1.3.72 semigraphic representation: Representation of graphic information by the use of a limited
set of characters.

1.3.73 single data element: A data element consisting of a single value. .

1.3.74 step: A situation in which the behavior of a program organization unit with respect to its inputs
and outputs follows a set of rutes defined by the associated actions of the step.

ol - IECDIS 11318

1.3.75 structured data type: An aggregate data type which has been declared using a STRUCT o
FUNCTION_BLOCK declaration.

1.3.76 subscripting: A mechanism for referencing an array element by means of an arvay reference
and one or more expressions that, when evaluated, denote the position of the element.

1.3.77 symbolic representation: The use of identifiers to name variables.

1.3.78 task: An execution controf slement providing for periodic or triggered exscution of a group of
associated program organization units. . 5

13.79 time literal: A fteral representing data of type TIME, DATE, TIME_OF DAY, or
DATE_AND_TIME.

1.3.80 transition: The condition whereby control passes from one or more predecessor staps to one
or IMore successor steps aiong a directed link.

1.3.81 unsigned integer: An integer /iteral not containing a leading plus (+) or minus {-} sign.

1.3.82 wired OR: A construction for achieving the Boolean OR function in the LD language by
cornecting together the right ends of horizontal connectives with vertical connectives...

1.4 Overview and general requirements

This Part of IEC 1131 specifies the syntax and semantics of a unified suite of programming languages
for programmable controllers {PCs). These consist of two textual languages, IL (Instruction List) and
ST (Structured Text), and two graphical languages, LD (Ladder Diagram) and FBD (Function Block
Diagram).

Sequential Function Chart (S8FC) elements are defined for structuring the irternal organization of
programmable controller programs and function blocks. Also, configuration elements are defined
which support the installation of programmabie controiler programs into programmable comroller
systems.

In addition, features are defined which facilitate communication among programmable controllers and
other components of automated systems. '

The programming language elements defined in this part may be used in an interactive programming
environment. The specification of such environments is beyond the scope of this Part; however, such
an environment shall be capable of producing textual or graphic program documentation in the formats
specified in this pan.

The material in this Part is amanged in "bottom-up™ fashion, that is, simpler language elements are
presented first, in order to minimize forward references in the text. The remainder of this subclause
provides an overview of the material presented in this Part and incorporates somae general
requirements,

IEC DIS 1131-3 -15-

1.4.1 Software model

The basic high-level language elements and their interrelationships are ilustrated in figure 1. These
consist of elements which are programmed using the languages defined in this Pan, that is, programs
and function blocks: and configuration elements, namely, configurations, resources, tasks, global
variables, and access paths, which support the installation of programmable controlier programs into
programmable controller systems.

A configuration is the language element which corresponds ¢ a programmable cortroller system as
defined in IEC 1131-1. A resource corresponds ic a "signal processing function™ and s "man-
machine interface” and "sensor and actuator interface” functions (if any) as defined in IEC 1131-1. A
configuration contains one or more resources, each of which contains one or more programs executed
under the control of zero or more fasks. A program may contain zero or more function blocks or other
language elements as defined in this Part,

Configurations and resources can be started and stopped via the “operator interface”, “programming,
testing, and monitoring”, or “operating system” functions defined in IEC 1131-1. The starting of &
configuration shall cause the inttialization of its global variables according to the rules given in 2.4.2 ,
foliowed by the starting of all the resources in the configuration. The starting of a resource shall cause
the initialization of all the vaniables in the resource, followed by the enabling of all the tasks in the
resource. The stopping of a resource shall cause the disabling of all its tasks, while the stopping of a
configuration shall cause the stopping of all its resources. Mechanisms for the control of fasks are
defined in 2.7.2, while mechanisms for the starting and stopping of configurations and resources via
communication functions are defined in IEC 1131-5.

Programs, resources, global vaniables, access paths (and their comesponding access privileges), and
configurations can be loaded or deleted by the “communication function” defined in IEC 1131-1. The
loading or deletion of a configuration or resource shall be equivalert to the loading or deletion of all the
elements # contains.

Access paths and their corresponding access privileges are defined in 2.7.1.

The mapping of the language elements defined in this subclause onto communication objects is
defined in IEC 1131-5. '

1.4.2 Communication mode!

Figure 2 illustrates the ways that values of variables can be communicated among software elements.

As shown in figure 2a, variable values within a program can be communicated directly by connection
of the output of one program element to the input of another. This connection is shown explicitly in
graphical languages and implicitly in textual languages.

Variable values can be communicated between programs in the same configuration via global
variables such as the variable "x" illustrated in figure 2b. These variables shall be deciared as
GLOBAL in the configuration, and as EXTERNAL in the programs, as specified in 2.4.3.

As illustrated in figure 2¢, the values of variables can be communicated between different pans of a
program, between programs in the same or different configurations, or between a programmable
controller program and a non-programmable controlier system, using the communication function
biocks defined in IEC 1131-5 and described in 2.5.2.3.5. In addition, programmable controilers or
non-programmable controller systems can transfer data which is made available by access paths, as
illustrated in figure 2d, using the mechanisms defined in IEC 1131-5.

IEC DIS 11313

=18 =
CONFIGURATION
RESOURCE RESOURCE

TASK TASK TASK TASK

PROGRAM \ PROGRAM PROGRAM PROGRAM |
N B

] FBLCIFB FBLIrB

p— e —_—1

GLOBAL and DIRECTLY REPRESENTED VARIABLES
ACCESS PATHS

Communication function (See IEC 1131-5)

execution controi path

P> ,, — P aiable access paths

FBl tunction block

1 varable

NOTE 1 - This figure is illustrative only. The graphical representation is not normative.
NOTE 2 - In a CONFIGURATION with a single RESOURCE, the RESQURCE need not be explicitly

represented.
Figure 1 - Software modei

IEC DIS 1131-3 ° 17 -
(a)
PROGRAM A
FB1 FB2
FB X FB_ Y
a b
(b}
CONFIGURATION C
PROGRAM A PROGRAMB
VAR _EXTERNAL VAR_EXTERNAL
x: BOCL; % BOOL;
END_VAR END_VAR
FB1 FB2
FB_X VAR_GLOBAL FB_Y
a X x:BOOL: —t— x — b
END_VAR
(c)
CONFIGURATIONC CONFIGURATION D
PROGRAM A PROGRAM B
send1 revil
SEND RCV
cC_D—ID 'C_D'1ID
X' "FR_ID connection X —R_ID
=5 SD1 o RD1 FB2
FB_X e FB_Y
b
a

(See NOTES on following page)

Figure 2 - Communication mode!
a) Data flow connection within a PROGRAM
b) Communication via GLOBAL variables
¢) Communication function biocks

(continued on following page}

18- [EC DIS 1131-3

{d)

CONFIGURATION C CONFIGURATION D
P1
PROGRAM A PROGRAM B
FB1
FB_X
B. TO_FB2 FB2
a rd READ FB Y
C weet |1 RO b
‘CSX == VAR_1 é
VAR_ACCESS
CSX: P1.2: REAL BEAD_ONLY:

NOTE 1 - This figure is illustrative only. The graphical representation is not normative.

NOTE 2 - in these examples, CONFIGURATIONs C and D are each considered to have a single
RESQURCE.

NQOTE 3 - The details of the communication function blocks are not shown in this figure. See 2.5.2.3.5
and IEC 1131-5.

NOTE 4 - As specified in 2.7, access paths can be declared on directly represemed variables,
GLOBAL variables, or PROGRAM input, output, or intemnal variables.

NOTE 5 - IEC 1131-5 specifies the means by which both PC and non-PC systemns can use access
paths for reading and writing of variables.

Figure 2 - Communication model {(continued)
d) Communication via access paths

iEC DIS 11313 =18 -

1.4.3 Programming model

The elements of programmable controller programming languages, and the subclauses in which they
appear in this Part, are classified as {foliows:

Data types (2.3}
Program organization units {2.5)
Functions (2.5.1)
Function biocks (2.5.2)
Programs (2.5.3)
Seguential Function Chart {SFC) slements (2.6}
Configuration elements (2.7)
Global variables (2.7.1)
Resources {2.7.1)
Tasks (2.7.2)
Access paths (2.7.1)

As shown in figure 3, the combination of these elements shall obey the lollowing rules:

1) Derived data types shall be declared as specified in 2.3.3, using the standard data types
. specified in 2.3.1 and 2.3.2 and any previously derived data types.

2) Derived functions can be declared as specified in 2.5.1.3, using standard or derived data types,
the standard functions defined in 2.5.1.5, and any previously derived functions. This declaration
shat use the mechanisms detined for the IL, ST, LD or FBD language. : _

3) Derived function blocks can be declared as specified in 2.5.2.2, using standard or derived data
types and functions, the standard function blocks defined in 2.5.2.3, and any previously derived
function blocks. This declaration shall use the mechanisms defined for the IL, ST, LD, or FBD
language, and can include Sequential Function Chart (SFC) elements as defined in 2.6.

4) A program shall be declared as specified in 2.5.3, using standard or derived data types,
functions, and function blocks. This declaration shalf use the mechanisms defined for the IL, ST, .
LD, or FBD language, and can include Sequential Function Chart (SFC) elements as defined in
2.6.

5) Programs can be combined into configurations using the elements defined in 2.7, that is, global
variables, resources, tasks, and access paths.

Reference to "previously derived” data types, functions, and function blocks in the above rules is
intended 1o imply that once such a derived element has been declared, its definition is available, e.g.,
in a “library” of derived elements, for use in further derivations. Therefore, the declaration of a derived
element type shaii not be contained within the declaration of ancther derived element type.

A programming language other than one of those defined in this standard may be used in the
declaration of a function or function block. The means by which a user program written in one of the
languages defined in this standard invokes the execution of, and accesses the data associaled with,
such a derived function or function block shall be as defined in this standard.

-0 [EC DIS 11213
LIBRARY ELEMENTS PRODUCTIONS DERIVED ELEMENTS
DATA TYPES (1) Derived
Standard (2.3.1,2.3.2) F—® poclaration (2.3.3) data
Derived fypes
{2 .
FUNCTIONS @ Declaration {2.5.1.3} Derived
Standard (2.5.1.5) 8 I, ST,LD,FBD functions
Derived OTHERS
3 .
FUNGTION BLOCKS |) Oeztagc&mégz} Derived
Stancard (2.5.2.3) SFC: eie‘me{;m 26 function
Seri : blocks
erived OTHERS
_ (4)
Declaration (2.5.3)
i, ST, LD, FBD PROGRAM
SFC elements (2.6)
PROGRAMS
(2.5.3)] Deciaration (2.7.1) ()
Access paths (2.7.1)
RESOURCES P Tasks (2.7.2)
(2.7.1)

in this figure.

NOTE 1 - The parenthesized numbers (1) to (5) refer lo corresponding paragraphs in 1.4.3.
NOTE 2 - Data types are used in all productions. For clarity, the corresponding linkages are omitted

Figure 3 - Combination of programmable controller language elements
LD - Ladder Diagram - 4.2

FBD - Function Block Diagram - 4.3

IL - Instruction List - 3.2
ST - Structured Text - 3.3
OTHERS - Other programming languages - 1.4.3

{EC DiS 11313 - 21 -

1.5 Compliance

This subclause defines the requirements which shall be met by programmable controller systems and
programs which claim compliance with this Part of IEC 1131.

1.5.1 Programmable controlier systems

A programmable controlier system, as defined in IEC 1131-1, which claims to comply, whoily or
partially, with the requirements of this Pant of IEC 1131 shall do so only as described below.

A compliance statement shall be included in the documentation accompanying the system, or shail be
produced by the system itself. The form of the compliance statement shall be:

"This system complies with the requirements of 1EC 1131-3, for the following language
features:”,

foliowed by a set of compliance tables in the following format:

Table title
Table No. Feature No. Feature description

Tabie and feature numbers and descriptions are to be taken from the tables given in the relevant
subciauses of this Part of IEC 1131, Table tities are to be taken from the foilowing table.

Tabie title For features in:
Common elements Clause 2
Common textual elements Subclause 3.1
IL language elements Subclauses 3.2.1-3.23

ST language elements Subciauses 3.3.1-3.3.24
Common graphical elements Subclauses 4.1 -4.1.6

LD language elements Subclauses 4.2-4.2.6

FBD language elements Subclauses 4.3 -4.3.3

A programmable controller system complying with the requirements of this Part with respect to a
language detined in this Part:

a) shall not require the inclusion of substitute or additional language elemerts in order to
accomplish any of the features specified in this Part;

b} shall be accompanied by a document that specifies the values of all implementation-
dependent pararmeters as listed in annex D;

c) shali be able 1o determine whether or not a users language elemeni viciates any
requirement of this Part, where such a violation is not designated an error in annex E, and
report the result of this determination 1o the user. In the case where the system does not
examine the whole program organization untt, the user shall be notified that the
determination is incomplete whenever no violations have been detected, in the portion of the
program organization unit examined,

.22 IEC DIS 11313

d) shall treat each user violation that is designated an error in annex E in at least one of the
following ways: :

1) there shall be a statement in an accompanying document that the ermor is not
reported;

2) the system shali repor during preparation of the program for execution that an
occurrence of that error is possible;

3) the system shall report the error during preparation of the program for execution;

4) the system shall report the error during execution of the program and initiate
appropriate system- or user-defined error handling procedures; '

and if any violations that are designated as erors are treated in the manner described in
d)1) above, then a note referencing each such treatment shall appear in a separate section
of the accompanying gocument;

e) shail be accompanied by a document that separately describes any features accepted by
the system that are prohibited or not specified in this part. Such features shall be described
as being "extensions to the <language> language as defined in IEC 1131-3"

f) shall be able to process in a manner similar to that specitied for errors any use of any such
extension; ,

a) shall be able to process in a manner similar to that specified for errors any use of one of the
implementation-dependent features specified in annex D;

h) shall not use any of the standard data type, function or function block names defined in this
Part for manufacturer-defined features whose functionality differs from that described in this
Part, ‘

i) shall be accompanied by a document defining, in the form specitied in annex A, the formal
syntax of all textual language elements supported by the system. S

The phrase "be able to" is used in this subclause to permit the implementation of a software switch
with which the user may controi the reporting of errors.

in cases where compilation or program entry is aborted due to some limitation of tables, etc., an
incomplete determination of the kind "no violations were detected, but the examination is incompiete”
will satisfy the requirements of this subclause. :

iEC DIS 1131-3 «23 -

1.5.2 Programs
A programmable controlier program complying with the requirements of IEC 1131-3:
a) shall use only those features specified in this Part for the particular language used;
b) shall not use any features identified as extensions to the language;
¢} shall not rely on any particular irﬁerpretation of implementation-dependent features.
The results produced by a complying program éha!t be the same when processed by any complying
system which supports the features used by the program, except as thesse results are influenced by

program execution timing, the use of implementation-dependent features (as listed in annex D} in the
program, and the execution of error handling procedures.

“24. IEC DIS 1131-3

2. Common elements
This clause defines textual and graphic elements which are common to all the programmable
controller programming languages specified in this Part of IEC 1131,

2.1 ise of printed characters

2.1.1 Character st

Textual languages and textual elements of graphic languages shall be represented in terms of the
"Basic code table” of the iSO 646 character set.

The encading of characters from national or extended (8-bit) character sets shall be consistent with
(50 646,

The required character set shown as feature 1 in table 1 consists of all the characters in columns 3 fo
7 of the "Basic code table” given as table 1 in 1SC 646, except for lower-case lefters and those
character positions which are reserved or optionally available for use in national character sets.

The manufacturer shall support one option (a or b) for each of features (3a,b) to (6a,b) ot table 1,
according to the following rules: :

- The "pound sign" shall be used in place of the "number sign™ {#) when the former occupies
character position 2/3 of a national implementation of the ISO 646 character set.

- The"currency sign" shail be used in place of the "dollar sign™ ($) when the former occupies
character position 2/4 of a national implementation of the ISO 648 character set.

- When the 7/12 character position in the 1SO 646 character set is used by ancther character in a
national set, the "exclamation mark™ (!} at position 2/1 shall be used to represent vertical fines.

- For delimitation of subscripts, the left and right parentheses "{)" shall be used in place of the left
and right brackets "[" when the latter occupy character positions of a national implementation
of the ISO 846 character set.

NOTE - The use of characters from national character sets is a typical extension of this
standard.

IEC DIS 1131-3 25 -

Table 1 - Character set features
No. Description
1 Required character set - see 2.1.1
2 Lower case characlers
3a | Number sign (#) OR
3b i Pound sign
4a | Dollar sign (3) CR
4h Currency sign
5a
5h
6a
&b

Verical bar {]) OR
Exclamation mari {1}
Subscript delimiters:

Left and right brackets [] OR

Left and right parentheses "()"
NOTE - When lower-case letlers (feature 2) are supporied, the case of letters shali not
be significant in language elements (except within comments as defined in 2.1.5, string
iiterals as defined in 2.2.2, and variables of type STRING as defined in 2.3.1}, e.g., the
identifiers "abecd”, "ABCD", and "aBCd" shali be interpreted identically.

2.1.2 Identifiers

An identifier is a string of letters, digits, and underline characters which shail begin with a letter or
underline character. '

Underlines shall be significant in identifiers, e.g., "A_BCD" and "AB_CD" shall be interpreted as
different identifiers. Multiple ieading or muitiple embedded underiines are not allowed.

Identifiers shall not contain imbedded space (SP} characters.

At least six characters of uniqueness shall be supported in all systems which suppont the use of
identifiers, e.g., "ABCDE 1" shall be interpreted as different from "ABCDEZ2" in all such systems.

Identifier features and examples are shown in table 2.

Table 2 - Identifier features
No. Feature description Examples

1 Upper-case and numbers IW215 IW215Z QX75 IDENT

2 Upper and lower case, numbers, | All the above plus:
embedded underiines LIM_SW_5 LimSw5 abcd ab_Cd

3 Upper and lower case, numbers, | Al the above plus: _MAIN _12V7
leading or embedded underlines

o6 - IEC DIS 1131-3

2.1.3 Keywords

Keywords are unique combinations of characters utilized as individual syntactic elements as defined in
annex B. All keywords used in this part are listed in annex C. Keywords shall not contain imbedded
spaces. The keywords listed in annex C shall not be used for any other purpose, e.g., variable names
or extensions as defined in 1.5.1.

NOTE - National standards organizations can publish tables of translations of the keywords
given in annex C. ‘ “

2.1.4 Use of spaces

The user shall be allowed to insert one or more spaces (code position 2/0 in the ISC 646 character
set) anywhere in the text of programmable controller programs except within keywords, literals,
identifiers, or delimiter combinations (e.g., for comments as defined below).

2.1.5 Comments

User comments shall be delimited at the beginning and end by the special character combinations ™™
and "*)", respectively, as shown in table 3. Except in the il language as defined in 3.2, comments
shall be permitted anywhere in the program where spaces are allowed, except within character string
iterals as defined in 2.2.2. Comments shall have no symtactic or semantic significance in any of the
languages defined in this par.

Nested comments are not allowed, e.g., {* (" NESTED *) *).

Table 3 - Comment feature
No. Feature description Examples

1 Comments T2 IR 121 2R 222 2Ll dl g sl sd ol
{* Alframed comment)

(ttntt"tw.ttt'qt.oo---"mt.)

IEC DIS 1131-3 - 27 -

2.2 External representation of data

Extemal representations of data in the various programmable controller programming languages shall
consist of numeric literals, character strings, and time literals.

2.2.1 Numeric literals

There are two classes of numeric literals: integer literals and real literals. A numeric fiteral is defined
as a decimal number or a based number. The maximum number of digits for each kind of numenc
seral shall be sufficiert to express the entire range and precision of values of all the data types which
are represented by the literal in a given impiementation.

Singie underline characters () inseried between the digits of a numeric literal shall not be significant.
No other use of underline characters in numeric literals is allowed.

Decimal literals shall be represented in conventional decimal notation. Real literals shall be

' distinguished by the presence of a decimal point. An exponent indicates the integer power of ten by
which the preceding number is to be multiplied to obtain the value represented. Decimal literals and
their exponents can contain a preceding sign (+ or -).

integer Iiterais can aiso be represented in base 2.8 or 16. The base shall be in decimal notation.
For base 16, an extended set of digits consisting of the ietters A through F shall be used, with the
conventional significance of decimal 10 through 15, respectively. Based numbers shall not contain a
leaging sign (+ or -).

Boolean data shall be represented by integer literals with the value zero (0) or one (1).

Numeric jiteral features and examples are shown in table 4.

Table 4 - Numeric literals

No. Feature description Examples
1 | Integer literals 12 0 123_456 +986
2 | Realliterals -12.0 0.0 0.456 3.14159_26
3 | Real literals with exponents | -1.34E-12 or -1.34e-12 1.0E+6 or 1.0e+b
1.234E6 or 1.234e6
4 | Base 2 literals 2#1111_1111 (255 decimal) 2#1110_0000 (240 decimal}
5 | Base 8 literals 8#377 (255 decimal) 8#340 (240 decimal) ’
6 | Base 16iiterals 168#FF or 16## (255 decimal) 16#E0 or 16#e0 (240 decimal)
7 1| Boolean zero and one 0 1

8 | Boolean FALSE and TRUE | FALSE TRUE

NOTE - The keywords FALSE and TRUE correspond to Boolean vailues of 0 and 1, respectively.

.28 - IEC DIS 11313

2.2.2 Character string literais

A character string literal is a sequence of zero or more characters prefixed and termminiated by the
single quote character ('). In character strings, the three~character combination of the dollar sign ($)
foliowed by two hexadecimal digits shail be interpreted as the hexadecimal representation of the eight-
bil character code, as shown in table 5. Additionally, two-character combinations beginning with the
dollar sign shall be interpreted as shown in table 8 when they occur in character strings.

Table 5 - Character string literal featurs
No. Example Explanation
1 " Empty string (length zero}
A String of length one containing the single character A

' String of length one containing the “space” character

‘%" String of length one containing the "single quote” character

'SRSL Strings of length two containing CR and LF characters
‘BOCS0A

'$$1.00° String of length five which would print as "$1.00"

Table 6 - Two-character combinations in character strings

No. Combination interpretation when printed

2 18 Dollar sign

3 1% Single quote

4 (3$Lorsl Line feed

5 | Norn Newline

6 | $PorSp Form feed (page)

7 1 $Ror%r Carriage retumn

8 | Tort Tab
NOTE - The "newling” character provides an implementation-independent means of defining the
end of a line of data for both physical and file ¥/O; for printing, the effect is that of ending a line of
data and resuming priting at the beginning of the next line.

IEC DIS 1131-3 -5 -

2.2.3 Time literals

The need to provide external representations for two distinct types of time-related data is recognized:
duration data for measuring or controliing the elapsed time of a controt event, and time of day data
(which may also include date information) for synchronizing the beginning or end of a contro event to
an absolute time reference.

Duration and time of day literals shall be delimited on the left by the keywords defined in 2.2.3.1 and
2232

2.2.3.1 Duration

Duration data shall be delimited on the left by the keyword T#, TIME# t#, or time#. The
representation of duration data in terms of days, hours, minutes, seconds, and milliseconds, or any
combination thereof, shall be supported as shown in table 7. The least significant time unit can be
wriflen in real notation without exponent.

The units of duration literals can be separated by undertine characters.

“Overflow” of the most significant unit of a duration literal is permitted, e.g., the notation T#25h_15m is
permitted.

Time units, e.g., seconds, milliseconds, etc., can be represented in upper of lower case letters.

Table 7 - Duration literal features

No. Feature description Examples
Duration literals without underines: T#14ms T#14.7s T#14.7m T#14.7h #14.7d ~
1a shorn prefix 1#25h15m t#5d14h12m18s3.5ms
1b long prefix ‘ TIME#14ms time#14.7s
Duration literais with underlines: T#14ms T#14.7s T#14.7m T#14.7h 1#14.7d
2a short prefix t#25h_15m t#5d_14h_12m_18s_3.5ms
2b long prefix TIME#25h_15m time#5d_14h_12m_18s_3.5ms

2.2.3.2 Time of day and date

EC DIS 11313

Prefix keywords for time of day and date literals shall be as shown in table 8. As iliustrated in table 9,
representation of time-of-day and date information shall be as specified in 13S0 3307.

Table 8 - Date and time of day literals

MNo. Feature description Prefix Keyword
1 Date literais {long pretix} + DATE®
2 Date literals {short prefix} D#
3 Time of day literals (long prefix) TIME_OF_DAY#
4 Time of day literals (short prefix) TOD#
5 Date and time literals {long prefix) DATE_AND_TIME#
B Date and time literals (short prefix) DT#

Table 8 - Examples of date and time of day literals

Long prefix notation Short prefix notation
DATE#1984-06-25 D#1984-06-25
date#1984-06-25 d#1984-06-25
TIME_OF DAY#15:36:55.36 TOD#15:36:55.38
time_of_day#15:36:55.36 tod#15:36:55.36
DATE_AND_TIME#1384-06-25-15:36:55.36 DT#1984-06-25-15:36:55.36

date_and_time#1984-06-25-15:36:55.36

dt#1984-06-25-15:36:55.36

2.3 Datatypes

A number of elementary (pre-defined) data types are recognized by this standard. Additionally,
generic data types are defined for use in the definition of overloaded functions (see 25.14). A
mechanism for the user or manufacturer to specity additional data types is also defined.

2.3.1 Elementary data types

The elementary data types, keyword for each data type, number of bits per data element, and range
of values for each elementary data type shall be as shown in table 10.

IEC DIS 1131-3

-51-

Table 10 - Eilementary data types

No. _ Keyword Data type Bits Range
1 | BOOL Boolean Note 8)
2 | SINT Short integer 8 Note 2)
3 JINT Integer 16 Note 2)
4 | DINT Double integer 32 Note 2)
5 | LINT Long integer 84 Note 2)
6 1§ USINT Unsigned short integer 8 Note 3)
7 1 UINT Unsigned integer 18 Note 2}
8 | UDINT Unsigned double integer 32 MNote 3}
9 | ULINT Unsigned long integer 84 Note 3)
10 | REAL Real numbers 32 Note 4)
11 | LREAL Long reals 64 Note 5)
12 | TIME Duration Note 1) Note 6)
13 | DATE Date (only) Note 1) Note 6)
14 | TIME_OF_DAY or TGD Time of day {only) Note 1) Note 6)
15 | DATE_AND_TIME or DT Date and time of Day Note 1) Note 6)
16 | STRING Variable-length character string Note 1} Note 7)
17 | BYTE Bit string of length 8 8 Note 7)
18 | WORD Bit string of length 16 16 Note 7)
18 | DWORD Bit string of length 32 32 Note 7)
20 | LWORD Bit string of length 64 64 Note 7)

NOTE 1 - The length of these data elements is implementation-dependent.

NOTE 2 - The range of values for variables of this data type is from -(2**(Bits-1)) to (2""(Bits-1))-1.
NOTE 3 - The range of values for variables of this data type is from 0 to (27" Bits)-1.

NOTE 4 - The range of values for variables of this data type shall be as defined in |[EC 558 for the
basic single width floating-point format.

NOTE 5 - The range of values for variables of this data type shall be as defined in IEC 559 for the
basic double width floating-peint format.

NOTE 6 - The range of values for variables of this data type is implementation-dependent.
NOTE 7 - A numeric range of values does not apply to this data type.

NOTE 8 - The possible values of this variable shail be 0 and 1, correspanding to the keywords
FALSE ang TRUE, respectively.

.32. iEC DIS 1131-3

2.3.2 Generic data types

in addition to the data types in table 10, the hierarchy of generic data types shown in table 11 shall be
used as defined in 2.5.1.4 in the specification of overloaded inputs and outputs of standard functions
and function blocks. Generic data types are identified by the prefix "ANY™.

Table 11 - Hlerarchy of generic data types

ANY
ANY_NUM
ANY_REAL
LREAL
REAL
ANY_INT
LINT, DINT, INT, SINT
ULINT, UDINT, UINT, USINT
ANY_BIT
LWORD, DWORD, WORD, BYTE, BOOL
STRING
ANY_DATE
DATE_AND_TIME
DATE, TIME_QOF_DAY
TIME
Derived (see NOTES)

NOTE 1 - Generic data types shall not be used in user-declared program organ:zat:on units as
defined in 2.5.

NOTE 2 - The generic type of a subrange derived type (feature 3 of table 12) shall be ANY_INT.

NOTE 3 - The generic type of a directly derived type (feature 1 of table 12) shali be the same as the
generic type of the elementary type from which it is derived.

NOTE 4 - The generic type of all other derived types defined in 1able 12 shall be ANY.

IEC DIS 1131-3 «33 .

2.3.3 Derived data types
2.3.3.1 Declaration

Derived (i.e., user- or manufacturer-specified) data types can be declared using the
TYPE...END_TYPE textual construction shown in table 12. These derived datz types can then be
used, in addition to the elementary data types detined in 2.3.1, in variable declarations as defined in
2.4.3.

An enumerated data type declaration specifies that the vaiue of any data element of that type can only
take on one of the values given in the associated list of identifiers, as illustrated in table 12.

A subrange declaration specifies that the value of any data element of that type can oniy fake on
values between and including the specified upper and lower limits, as flustrated in table 12.

A STRUCT declaration specifies that data elements of that type shall contain sub-elements of
specified types which can be accessed by the specified names. For instance, an element of data type
ANALOG_CHANNEL_CONFIGURATION as declared in table 12 will contain 2 RANGE sub-element
of type ANALOG_SIGNAL_RANGE, a MIN_SCALE sub-element of type ANALOG_DATA, and a
MAX_SCALE element of type ANALOG_DATA.

An ARRAY declaration specifies that a sufficient amount of dala storage shall be allocated for each
element of that type to store all the data which can be indexed by the specified index subrange(s).
Thus, any element of type ANALOG_16_INPUT_CONFIGURATION as shown in table 12 contains
(among other elements) sufficient storage for 16 CHANNEL elements of type ANALOG_
CHANNEL_CONFIGURATION. Mechanisms for access to array elements are defined in 2.4.1.2.

2.2.3.2 initialization

The detault inttial value of an enumerated_data type shall be the first identifier in the associated
enumeration list, or a value specified by the assignment operator ":=". For instance, as shown in
tables 12 and 14, the default initial values of elements of data types ANALOG_SIGNAL_TYPE and
ANALOG_SIGNAL_RANGE are SINGLE_ENDED and UNIPOLAR_1_5V, respectively.

For data types with subranges, the default initial values shall be the first {lower) limit of the subrange,
uniess otherwise specified by an assignment operator. For instance, as declared in table 12, the
default initial value of elements of type ANALOG_DATA is -4095, while the default initial value for the
FILTER_PARAMETER sub-element of elements of type ANALOG_16_INPUT_CONFIGURATION is
zero. In contrast, the default initial value of elements of type ANALOG_DATAZ as declared in table
14 is zero.

For other derived data types, the default initial values, unless specified otherwise by the use of the
assignment operator ":=" in the TYPE declaration, shall be the default initial values of the undertying
elementary data types as defined in table 13. Further examples of the use of the assignment operator
for initialization are given in 2.4.2.

The default maximum fength of elements of type STRING shall be an implementation-dependent
value unless specified otherwise by a parenthesized maximum length (which shail not exceed the
implementation-dependent default value) in the associated declaration. For example, if type STR10 is
declared by

TYPE STR10 : STRING(10) := ‘ABCDEF; END_TYPE

the maximum length. default initial value, and defauit initial length of data elements of type STR10 are
10 characters, 'ABCDEF', and 6 characters, respectively. ') :

« 3. ECDIS 11313

Table 12 - Data type declaration features

No. ' Featurefextual example

1 | Direct derivation from elementary types, e.g.:
TYPE R : REAL ; END_TYPE

2 | Enumerated data types, e.9.

TYPE ANALOG_SIGNAL_TYPE : (SINGLE_ENDED, DIFFERENTIAL) ; END_TYPE

3 | Subrange data types, 8.g.:
TYPE ANALOG_DATA : INT (-4095..4095) ;: END_TYPE.

4 | Array data types, e.g.:
TYPE ANALOG_16_INPUT_DATA : ARRAY [1..16] OF ANALOG DATA END_TYPE

5 | Structured data types, ...
TYPE
ANALOG_CHANNEL_CONFIGURATION :
STRUCT
RANGE : ANALOG_SIGNAL_RANGE ;
MIN_SCALE : ANALOG_DATA ;
MAX_SCALE : ANALOG_DATA ;
END_STRUCT ;
ANALOG_16_INPUT_CONFIGURATION :
STRUCT
SIGNAL_TYPE : ANALOG_SIGNAL_TYPE ;
FILTER_PARAMETER : SINT (0..99) ;
CHANNEL : ARRAY [1..16] OF ANALOG_CHANNEL_CONFIGURATION ;

END_STRUCT ;
END_TYPE
NOTE - For examples of the use of these types in variable declarations, see 2.3.3.3, 2.4.1.2, and
table 17.
Table 13 - Default initial values
Data type(s) initial value
BOOL, SINT, INT, DINT, LINT 0
USINT, UINT, UDINT, ULINT 0
BYTE, WORD, DWORD, LWORD 0
REAL, LREAL 0.0
TIME T#0S
DATE D#0001-01-01
TIME_OF_DAY TOD#00:00:00
DATE_AND_TIME -] DT#0001-01-01-00:00:00
STRING " (the empty string)

[EC DIS 1131-3 .35

Table 14 - Data type initial value declaration features

No. Featureftextuai example

1 | Initialization of directly derived types, e.g..
TYPE P! : REAL := 3.1415825 ; END_TYPE

2 | inftialization of enumerated data types, e.g..

TYPE ANALOG_SIGNAL_RANGE :
(BIPOLAR_10V, {(*-10to +10VDC 7}
UNIPOLAR_10V, {* 0to+10VDC *)
UNIPCLAR_1QV, (* Cto+10VDC *)
UNIPOLAR_1_5V, {"+110+5VDC 9
UNIPOLAR_O_SV, (" 0to+5VDC %)
UNIPOLAR_4_20_MA, (*+410+20 mADC "}
UNIPOLAR 0_20_MA {* 0Oto+20 mADC ™)
)= UNIPOLAR_1_3V .

END_TYPE

3 | Initialization of subrange data types, e.g.:
TYPE ANALOG_DATAZ : INT (-4095..4095) = 0 ; END_TYPE

4 | Initigiization of array data types, e.g.:
TYPE ANALOG_16_INPUT_DATAI !

ARRAY [1..16] OF ANALOG_DATA := 8(-4095), B(4085) ;
END_TYPE

5 | Inftialization of structured data type elements, e.g.:
TYPE ANALOG_CHANNEL_CONFIGURATIONI :
STRUCT
RANGE : ANALOG_SIGNAL_RANGE ;
MIN_SCALE : ANALOG_DATA = -4085 ;
MAX_SCALE : ANALOG_DATA := 4095 ;
END_STRUCT;
END_TYPE

6 | Initialization of derived siructured data types, €.g.:
TYPE ANALOG_CHANNEL_CONFIGZ :
ANALOG_CHANNEL_CONFIGURATIONI(MIN_SCALE = 0,
MAX_SCALE = 9999);

END_TYPE

-36 - IEC DIS 1131-3

2.3.3.3 Usage

The usage of variables which are declared (as defined in 2.4.2) to be of derived data types shall
conform to the following rules:

(1) A single-element variable, as defined in 2.4.1.1, of a derived type, can be used anywhere that a
variable of s "parent's” type can be used, e.g. variables of the fypes R and P! as shown in
tables 12 and 14 can be used anywhere that a variable of type REAL couid be used, and
variables of type ANALOG_DATA can be used anywhers that a variable of type INT could be
used.

This rule can be applied recursively. For example, given the declarations below, the variable R3
of type R2 can be used anywhere a variable of type REAL can be used:

TYPE R1 : REAL := 1.0 ; END_TYPE
TYPE R2: 81 ; END_TYPE
VAR R3: R2; END_VAR

(2) An element of a mufti-element variable, as defined in 2.4.1.2, can be used anywhere the
“parent” type can be used, e.g., given the declaration of ANALOG_16_INPUT_DATA in table 12
and the declaration

VAR INS : ANALOG_16_INPUT_DATA ; END_VAR

the variables INS[1] through INS[16] can be used anywhere that a variable of type INT couid be
used.

This rule can also be applied recursively, eg. given the declarations of
ANALOG_16_INPUT_CONFIGURATION, ANALOG_CHANNEL_CONFIGURATION, and
ANALOG_DATA in table 12 and the declaration

VAR CONF : ANALOG_16_INPUT_CONFIGURATION ; END_VAR

the variable CONF.CHANNEL[2].MIN_SCALE can be used anywhere that a variable of type
INT could be used.

IEC DIS 1131-3 - 37 -

2.4 Variables

in contrast to the external representations of data described in 2.2, vanables provide a means of
identifying data objects whose contents may change, e.g., data associated with the inputs, outputs, or
memory of the programmable controller. A variable can be declared 1o be one of the elementary types
defined in 2.3.1, or ane of the derived types which are declared as defined in 2.3.3.1.

2.4.1 Representation
2.4.1.1 Single-element variables

A single-element variable is defined as a variable which represents a single data element of one of the
elementary types defined in 2.3.1; a derived enumeration or subrange type as defined in 23.3.1, or a
derived type whose “parentage”, as defined recursively in 2.3.3.3, is traceable {0 an elementary,
enumeration or subrange type. This subclause defines the means of representing such vanabies
symbolically, or altemnatively in a manner which directly represents the association of the data element
with physical or logical locations in the programmable corntroller's input, output, or memory structure.

Identifiers, as defined in 2.1.2, shall be used for symbolic representation of variables.
Direct representation of a single-element variable shall be provided by a special symbol formed by the
concatenation of the percent sign "%" (position 2/5 in the 1SO 646 code table), a location prefix and a
size prefix from table 15, and one or more unsigned integers, separated by periods ().

Examples of directly represented variables are:

%QX75 and %Q75 Qutputbit 75

%IW215 input word location 215

%87 Cutput byte location 7

%MD48 Double word at memory location 48
%IW2.5.7.1 See explanation below

The manutacturer shall specify the correspondence between the direct representation of a variable
and the physical or logical location of the addressed item in memory, input or output. When a direct
representation is extended with additional integer fields separated by periods, it shall be interpreted as
a hierarchical physical or logical address with the leftmost fiekd representing the highest level of the
hierarchy, with successively lower levels appearing to the right. For instance, the variable %IW2.5.7.1
may represent the first "channel” {word) of the seventh "module” in the fifth “rack” of the second "I/O
bus" of a programmable controller system.

The use of hierarchical addressing to permit a program in one programmable controller system to
access data in another programmabile controller shali be considered a language extension.

The use of directly represented variables is only permitted in programs, as defined in 2.5.3, and in
configurations and [esources as defined in 2.7.1. The maximum number of levels of hierarchical
addressing is an implementation-dependent parameter. ‘

-38. [EC DIS 11318

Table 15 - Location and size prefix features for directly represented variables

No. | PREFIX MEANING
1 | Input location
2 Q Output location
3 M Memory location
4 X Singie bit size
5 None Single bit size : k
6 B Bvie (& bits) size
7 W Word (16 bits) size
8 D Double word (32 bits) size
g L Long (quad) word (64 bits) size
NOTE 1 - Unless otherwise declared, the data type of a directly addressed varable of "single bit”
size shall be BOOL.
NQTE 2 - Naticnal standards organizations can publish tables of translations of these prefixes.

2.4.1.2 Multi-element variables
The mufti-element variable types defined in this standard are arrays and structures.

An array is a collection of data elements of the same data type referenced by one or more subscripts
enclosed in brackets and separated by commas. A subscript shall be an expression yiekding a value
corresponding to one of the sub-types of generic type ANY_INT as defined in table 11.

An example of the use of array variables in the ST language as defined in 3.3 is:
QUTARY[%MBB&,SYM] = INARY[0] + INARY[7] - INARY[%MB6] * %IW62 ;

The maximum number of subscripts, and the maximum range of subscript values, which may be used
to access array variables is an implementation-dependent parameter.

A structured variable is a variable which is declared to be of a type which has previously been
specified to be a data structure, i.e., a data type consisting of a collection of named elements.

An element of a structured variable shall be represented by two or more identifiers or array accesses
separated by single periods (.). The first identifier represents the name of the structured eiement, and
subsequent identifiers represent the sequence of component names to access the particular data
elemenrt within the data structure.

For instance, if the variable MODULE_S_CONFIG has been declared 1o be of type
ANALOG_16_INPUT_CONFIGURATION as shown in table 12, the following statements in the ST
language defined in 3.3 would cause the vaiue SINGLE_ENDED to be assigned to the element
SIGNAL_TYPE of the variable MODULE_S_CONFIG, while the value BIPOLAR_10V wouid be
assigned to the RANGE sub-element of the fifth CHANNEL element ot MODULE_5_CONFIG:

MODULE_5_CONFIG.SIGNAL_TYPE := SINGLE_ENDED);
MODULE_5_CONFIG.CHANNEL[5].RANGE := BIPOLAR_10V;

The maximum number of levels of structure element addressing is an implementation-dependent
parameter.

IECDIS 11313 =38 -

2.4.2 Initialization

When a configuration element (resource or configuration) is "started” as defined in 1.4.1, each of the
variables associated with the configuration element and its programs can take on one of the following
initial values:

- the value the variable had when the configuration element was “stopped” (a refained value);
- a user-specified initial value;
- the default initial value for the variable's associated daia type.

The user can declare that a variable is o be refentive by using the RETAIN qualifier specified in table
16, when this feature is supporied by the impiementation.

The inftial value of a variable upon starting of its associated configuration element shali be determined
according to the following rules:

1) If the starting operation is a "warm restart” as defined in IEC 1131-1, the initial values of ratentive
variables shall be their retained values as defined above.

2) If the operation is a "cold restart” as defined in IEC 1131-1, the initial vaiues of retentive vanables
shall be the user-specified initial values, or the default value, as defined in 2.3.3.2, for the
associated data type of any variable for which no initial value is specified by the user.

3) Non-retained variables shall be initialized to the user-specified initial values, or to the defautt value,
as defined in 2.3.3.2, for the associaled data type of any variable for which no initial vaiue is
specified by the user.

4) Variables which represent inputs of the programmable controller system as defined in IEC 1131-1
shall be initialized in an implementation-dependent manner.

2.4.2 Declaration

Each programmable controller program organization unit type declaration (i.e., each declaration of a
program, function, or function block, as defined in 2.5) shall contain at its beginning at least one
declaration part which specifies the types (and, if necessary, the physical or logical location) of the
variabies used in the organization unit. This declaration part shall have the textual form of one of the
keywords VAR, VAR_INPUT, or VAR_OUTPUT as defined in table 16, foliowed in the case of VAR
and VAR_OUTPUT by zero or one occurrence of the qualifier RETAIN or the gualifier CONSTANT,
followed by one or more declarations separated by semicolons and terminated by the keyword
END_VAR. When a programmable controller supports the declaration by the user of initial values for
variables, this declaration shalil be accomplished in the declaration pan(s) as defined in this subclause.

The scope (range of validity) of the declarations contained in the deciaration part shall be kocal to the
program organization unit in which the declaration parnt is comtained. That is, the declared variables
shall not be accessible to other program organization units except by explicit parameter passing via
variables which have been declared as inputs or outputs_of those units. The one exception to this rule
is the case of variables which have been declared 1o be global, as defined in 2.7.1. Such varables
are only accessible to a program organization unit via a VAR_EXTERNAL declaration. The type of a
variable declared in a VAR_EXTERNAL block must agree with the type declared in the VAR_GLOBAL
block of the associated program, configuration or resource.

- 40 -

Table 16 - Variable deciaration keywords

IECDIS 11313

KEYWORD VARIABLE USAGE
VAR Internal to organization unit .
VAR_INPUT Externally supplied, not modifiable within organization unit
VAR_OUTPUT Supplied by organization unit to external entities
VAR_IN_OUT Supplied by extenal entities
Can be medified within organization unit
VAR_EXTERNAL Supplied by configuration via VAR_GLOBAL (2.7.1)
' Can be modified within organization unit
VAR_GLOBAL Global variable declaration (2.7.1}
VAR_ACCESS Access path declaration (2.7.1)
RETAIN Retentive variables (see preceding text)
CONSTANT Constant (variable cannot be modified)
AT Logation assignmert (see 2.4.3.1)
NOTE - The usage of these keywords is a feature of the program organization unit or configuration
element in which they are used: see 2.5 and 2.7.

2.4.3.1 Type assignment

As shown in table 17, the VAR...END_VAR construction shall be used to specify data types and
retentivity for directly represented variables. This construction shall also be used to specify data
types, retentivity, and {where necessary, in programs only} the physical or logical location of
symboiically represented single- or multi-element variables. The usage of the VAR_INPUT,
VAR_OQUTPUT, and VAR_IN_QUT constructions is detined in 2.5.

The assignment of a physical or logical address to a symbolically represented variable shall be
accomplished by the use of the AT keyword. Where no such assignment is made, automatic
allocation of the variable to an appropriate location in the programmable controller memory shail be

provided.

Table 17 - Variable type assignment features

No. Feature/examples

1 | Declaration of directly represented, non-retentive variables

VAR
AT %IW6.2 : WORD;
AT %MWSE 1 INT;
END_VAR

2 | Declaration of directly represented retentive variables

16-bit string (NOTE 2)
16-bit integer, initial value = 0

VAR RETAIN At cold restart, %QWS5 will be initialized to a 16-bit string
AT %QWS5 : WORD : with value 0 ' .
END_VAR

{continued on following page)

IEC DIS 1131-3

- 81 -

Table 17 - Variable type assignment features (continued)

Declaration of locations of symbolic variables

VAR_GLOBAL
LIM_SW_S5 : BOOL AT %IX27;

CONV_START : BOOL AT %QX25;

TEMPERATURE AT %IW28: INT ;
END_VAR

Assigns input bit 27 to the Boolean variable
LIM_SW_5 (NOTE 2)

Assigns output bit 25 to the Boolean variable
CONV_START

Assigns input word 28 to the integer variable
TEMPERATURE (NOTE 2}

Array location assighment

VAR Declares an amay of 10 irrtegérs to be allecated to
INARY AT %iW6 - contiguous input locations starting at %IW6 (NOTE 2)
ARRAY [0..9] OF INT ;
END_VAR
Automatic memory allocation of symbolic variables
VAR Allocates a memory bit to the Booiean variable -

CONDITION_RED : BOOL;
IBOUNCE : WORD ;

MYDUB : DWORD ;

AWQRD, BWORD, CWORD : INT;

MYSTR: STRING(10) ;

CONDITION_RED.

Allocates a memory word to the 16-bit string
variable IBOUNCE.

Allocates a double memory word to the 32-bit-string
variable MYDUB.

Allocates 3 separate memory words for the integer
variables AWORD, BWORD, and CWORD.
Allocates memory to contain a string with a
maximum length of 10 characters. After initializa-

END_VAR
tion, the string has iength 0 and contains the empty
string "
Amray declaration _
VAR THREE : Allocates 400 memory words for a three-

ARRAY[1..5,1..10,1..8] OF INT;
END_VAR

dimensional array of integers

Retentive array declaration

VAR RETAIN RTBT:
ARRAY[1..2,1..3} OF INT;
END_VAR

Declares retentive array RTBT with “cold restart”
initial values of 0 for all elements

Declaration of structured variables

VAR MODULE_8_CONFIG :

Declaration of a variable of derived data type

END_VAR

ANALOG_16_INPUT_CONFIGURATION;

{see table 12)

NOTE 1 -
defined in 2.5.3 and 2.7.1 respectively.

Features 1 1o 4 can only be used in PROGRAM and VAR_GLOBAL deciaranons.

NOTE 2 - Initialization of system inputs is implementation-dependent; see 2.4.2.

-42. IEC DIS 11313

2.4.3.2 Initial value assignment

The VAR...END_VAR construction shown in table 18 shall be used to specify initial vakues of directly
represented variables. This construction shall also be used o assign initial values of symbofically
represented single- or multi-element variables (the usage of the VAR_INPUT, VAR_OUTPUT, and
VAR_IN_OUT constructions is defined in 2.5).

Intial values cannot be given in VAR_EXTERNAL declarations.

During initialization of arrays, the righimost subscript of an array shall vary most rapidly with respect to
filling the array from the list of initialization variables.

Parentheses can be used as a repetition factor in array initialization lists, e.g., "2(1,2,3)" is equivaient
to the initialization sequence "1,2,3,1,2,3".

If the number of initial values given in the initialization list exceeds the number of aray entries, the
excess (righimost) initial values shall be ignored. If the number of initial values is less than the
number of array entries, the remaining array entries shall be filled with the default initial values for the
corresponding data type. [In either case, the user shall be warned of this condition during preparation
of the program for execution.

When a variable is declared to be of a derived, structured data type as defined in 2.3.3.1, initial values
for the elements of the vanable can be declared in a parenthesized list following the data type
icentifier, as shown in table 18. Elements for which initial values are not listed in the inttial value list
shall have the defauit initial values declared for those elements in the data type declaration.

Tabie 18 - Variable initial value assignment features

No. Feature/examples

1 | initialization of directly represented, non-retentive variables

VAR AT %QX5.1 : BOOL =1, Boolean type, initial value =1
AT %MWGE 1 INT = 8; Initializes a memory word to integer 8
END_VAR
2 | Initialization of directly represented retentive variables
VAR RETAIN Al coid restant, the 8 most significant bits of the
AT %0OWS : WORD = 168FF00 ; 16-bit string at output word 5 are to be initialized
END_VAR to 1 and the 8 least significant bits 1o 0
3 | Location and initial value assignment to symbolic variables
VAR Assigns output word 28 to the integer variable
VALVE_POS AT %QW28 : INT = 100; | VALVE_PQOS with an indlial value of 100
END_VAR
4 | Amray location assignment and initiailization
VAR OQUTARY AT %QWS6 : Declares an array of 10 integers to be allocated
ARRAY {0..9] OF INT := 10(1) ; 10 contiguous output locations starting at

END_VAR “%QW8, each with an initiai value of 1

- {continued on following page)

IEC DIS 1131-3

=43

Table 18 - Variable initial value assignment features (continued)

No. .Feature/examples
5 | Initialization of symbolic variables
VAR Allocates a memory bit to the Boolean variable MYBIT
MYBIT . BOOL = 1; with an indial value of 1.
OKAY : STRING(10) = '0OK'; | Allocates memory io contain a string with a maximum
END_VAR iength of 10 characters. After initialization, the string has
length 2 and cortains the two-byte sequence of
characters "OK’ in the ISO 846 character set, in an order
appropriate for printing as a character string.
& Array initialization
VAR Aliocates & memory bits to contain intiai values
BITS . ARRAY!0..7] OF BOOL BITS[0}:= 1, BITS[1] == 1,...,
=1,1,0,0,0,1,0.0; BITS{6]:= &, BITS[7} = 0.
TBT : ARRAY [1..2,1..3] Allocates a 2-by-3 integer array TBT with initial vaives
OF INT TBT[1.1}=1, TBT[1,2]:=2, -
'=1,2,3(4),6 ; TBT[1,3}:=4, TBT[2,1]:=4,
END_VAR TBT[2,2]:=4, TBT[2,3]:=6
7 Retentive array declaration and initialization
VAR RETAIN RTBT : Declares retentive array RTBT with "cold restart” initial
ARRAY(1..2,1..3) OF INT values of: RTBT]1,1]:= 1, RTBT[1,2] .= 2,
= 1,2,3(4); RTBT[1.3] = 4, RTBT[2,1] = 4,
END_VAR RTBT]2,2] := 4, RTBT[2,3] =0
8 initialization of structured variables
VAR MQDULE_8_CONFIG : initialization of a variable of derived data
ANALOG_16_INPUT_CONFIGURATION type (see table 12)
(SIGNAL_TYPE = DIFFERENTIAL,
CHANNEL[5].RANGE := BIPOLAR_10_V,
CHANNEL[S].MIN_SCALE = 0,
CHANNEL[5].MAX_SCALE := 500) ;
END_VAR
9 ' initialization of constants

VAR CONSTANT P! : REAL = 3.141582 ; END_VAR

NOTE - Features 1 to 4 can only be used in PROGRAM and VAR_GLOBAL declarations, as
defined in 2.5.3 and 2.7.1 respectively.

- &4 - ECDIS 113138

2.5 Program organization units

The program organization units defined in this Part of IEC 1311 are the function, function block, and
program. These program organization units can be delivered by the manutacturer, or programmed by
the user by the means defined in this part of the standard.

Program organization units shail not be recursive; that is, the invocation of a program crganization unit
shall not cause the invocation of ancther program organization unit of the same type.

2.5.1 Functions

For the purposes of pregrammabie controller programming languages, a function is defined as a
program organization unit which, when executed, vields exactly cne data element {which can be multi-
valued, e.g., an array or structure), and whose invocation can be used in textual languages as an
operand in an expression. For example, the SIN and COS functions could be used as shown in figure
4

(a) Z 1= SIN(X)*COS(Y) + COS(X)*SIN(Y)
i +
X-==mt==| SIN j==+
N o
i | +m——+ $mm—t
| A=————— + dm—m] | mme——— | + |=-=2
(b) Yrmtmmmmi COS |-m--- N
i] Amm——— + Fommmt | et
bl ;
L + Fm——
| +=-] COS |-—=== P fmeet
| tmmm + k==
| b4t
t tommm +
pommn] SIN |==+
+

Figure 4 - Examples of function usage
a) Structured Text {ST) language - subclause 3.3
b)Function Block Diagram (FBD) language - subclause 4.3

Functions shall contain no internal state information, i.e., invocation of a function with the same
arguments {(input parameters) shall atways yield the same value {output). It shall be an error if
external variables as defined in 2.4.3 cause the violation of this rule, or of the rule that evaluation of
the function yields exactly one data element. _

Any function type which has already been declared can be used in the declaranon of another program
organization unit, as shown in figure 3.

IEC DIS 1131-3 - 45 -

2.5.1.1 Representation

Functions and their invocation can be represented either graphically or textually.

In the graphic languages defined in clause 4 of this Part, functions shail be represented as graphic
blocks according to the following ruies:

1) The form of the block shall be rectangular or square.

2) The size and proportions of the biock may vary depending on the number of lnputs and other
information to be displayed.

3) The direction of processing through the biock shall be from left to right (input parameters on the
left and output parameter on the right).

4) The function name or symbel, as specified below, shall be located inside the biock.

5) Provision shall be made for formai input parameter names, where required by this Part,
appearing at the inside left of the block.

8) Since the name of the function is used for the assignment of its output value as specified in
2.5.1.3, no formal output parameter name need be shown at the right side of the block.

73 Actual parameter connections shall be shown by signal flow lines.

8} Negation of Boolean signals shall be shown by placing an open circle just outside of the input or
output line intersection with the block. In the ISO 646 character set, this shall be represented
by the upper case alphabetic "O", as shown in table 19.

9) The output of a graphically represented function shall be represented by a single line at the right
side of the block, even though the output may be a multi-element variable.

Table 19 - Graphical negation of Boolean signals

No. Feature Representation
1 Negated input s
-==01 |===
o
2 Negated output ot
~mmel |O=--
e
NOTE - If either of these features is supported for functions, it shall
also be supported for function blocks as defined in 2.5.2, and vice
versa,

As shown in figure 5, where a formal parameter name is present in the definition of a standard
function in 2.5.1.5, the formal parameter name shall also be used in the textual invocation of the
function. in the latter case, the formal parameter names and associated actual values can be given in
any order.

The representation of functions in textual languages shall be as specified in clause 3 of this Pan.

- 46 - IEC DIS 1131-3

Example Expianation
o= + Graphical use of “ADD" function
| ADD | {See 2.5.1.5.2)
Bew=| j~—=B {FBD language - subclause 4.3}
Cmmem | | (No formal parameter names)
D-—-| |
o + ,
A := ADD(B,C,D} : Textual use of "ADD" function
{ST language - subclause 3.3}
N + Graphical use of "SHL" function
| SHL | (See 2.5.1.5.3}
Be==|IN j—==A (FBD language - subclause 4.3}
C---IN E (Formal parameter names)
tn— +
A := SHL(IN:=B, N:=C) ; Textual use of "SHL" function
(ST language - subclause 3.3}

Figure 5 - Use of formal parameter names

2.5.1.2 Execution control

As shown in table 20, an additional Boolean “EN" {Enable) input and "ENQ" (Enable Out) output shall
me used with functions in the LD language defined in 4.2, and their use shall aiso be possible in the
FBD language defined in this Part. These variables are considered to be available in every function
according to the implicit declarations

VAR_INPUT EN:BOOL = 1; END_VAR
VAR_OQUTPUT ENO:BOOL; END_VAR

 When these variables are used, the execution of the operations defined by the function shall be
- controlled according to the following rules:

1) If the value of EN is FALSE (0) when the function is invoked, the operations defined by the
function body shall not be executed and the value of "ENQ" shall be reset to FALSE (0) by the
programmable controller system.

2) Ctherwise, the value of ENO shall be set to TRUE (1) by the programmable controlier system,
and the operations defined by the function body shail be executed. These operations can
include the assignment of a Boolean vaiue to ENOC.

3) if one of the errors defined in annex E occurs during the execution of one of the standard
functions defined in 2.5.1.5, the ENO output of that function shall be reset to FALSE (0) by the
programmable controller system.

ECDIS 1131-3 - 87 -

Table 20 - Use of EN input and ENO output

No. Feature Example
1 | Use of "EN" and "ENO"

- REQUIRED for LD F— + |
(Ladder Diagram) language { ADD EN | + i ADD OK |
(subclause 4.2) tmm=||==~|EN ENOj==={ }=—=+

i f i t
f Brom=| j=uC {
& Bo==| E !
e + !
2 | Use of "EN" and "ENC" fonmm—— +

- OPTIONAL for FBD P+
{Function Block Diagram) ADD EN--~|EN ENO|---ACD OK
language {(subclause 4.3} Be——] g

Bow= | |

o e e +

3 | FBD without "EN" and "ENO" - +
Aw==] + |===C

B~ |

f———— +

2.5.1.3 Declaration
A f{unction shall be declared textually or graphically.

As iilustrated in figure 6, the texiual declaration of a function shall consist of the following elements:

1} The keyword FUNCTION, followed by an identifier specifying the name of the function being
declared, a colon (1), and the data type of the value to be returned by the function;

2) A VAR_INPUT...END_VAR construct as defined in 2.4.2, specifying the names and types of the
funclion’s input parameters;

3) A VAR..END_VAR construct, if required, specifying the names and types of the function’s
internal variables;

4) A function body, written in one of the languages defined in this Part, or another programming
language as defined in 1.4.3, which specifies the operations to be performed upon the input
parameter(s} in order to assign one or more values to a variable with the same name as the
function, which represents the value to be returned by the function;

5) The terminating keyword END_FUNCTION.

As illustrated in figure 6, the graphic declaration of a function shall consist of the following elements:
1) The bracketing keywords FUNCTION...END_FUNCTION or a graphical equivalent;

2) A graphic specification of the function name and the names and types of the function’s inputs
and output, : . B .

3) A specification of the names and types of the internal variables used in the function, e.g., using
the VAR...END_VAR construct;

4) A function body as defined above.

- 48 - IEC DIS 11313

(a) FUNCTION SIMPLE FUN : REAL
VAR INPUT
A,B : REAL ;: {* External interface specification *)
C : REAL := 1.0 ;
END VAR

SIMPLE FUN := A*B/C: (* Function body speclification *}

END_FUNCTION

() FUNCTION
s e e +
| SIMPLE FUN |
REAL~~===1A | ===—REAL
REAL-~~=|B | {(* External interface specification *)
REAL=w=-=|C !
o o e e e +
Frmm—— {* Function body specification *)
A-mmi * | Ame=+
B---| j—=={ / }{~--SIMPLE FUN
Fo——t I |
Commmmwr e I |
S ans

END_FUNCTION

NOTE - In example a), the input variable C is given a default value of 1.0, as spei:ified in
2.4.3.2, to avoid a “division by zero" error if the input is not specified when the func-
tion is invoked, for example, if a graphical input to the function is left unconnected.

Figure 6 - Examples of function declarations
(a) Textuai declaration in ST language (subclause 3.3)
(b) Graphical deciaration in FBD language (subclause 4.3)

2.5.1.4 Typing, overloading, and type conversion

A function or operation is said to be overfoaded when it can operate on input data elements of various
types within a generic type designator as defined in 2.3.2. For instance, an overicaded addition
function on generic type ANY_NUM can operate on data of types LREAL, REAL, DINT, INT, and
SINT.

When a programmable controlier system suppons an overloaded operation or function, this operation
or function shall apply to ali data types of the given generic type which are supported by that system.
For example, if a programmable controiler system supports the overloaded function ADD and the data
types SINT, INT, and REAL, then the system shail support the ADD function on inputs of type SINT,
INT, and REAL.

When a function which normally represents an overloaded operator is to be typed, i.e., the types of its
inputs and outputs restricted to a particular subtype, this shall be done by appending an "underline”
character followed by the required type, as shown in table 21.

IEC DIS 1131-3 =49 -

Table 21 - Typed and ovetloaded functions

No. Feature Example
1 Overoaded functions e +
i ADD |
ANY NUM=o oo i | —=—eANY NUM
ANY NUM===—- i f
~~~~~ | |
. - f i
ANY NUM--—-- | f
o e +
2 Typed functions A o +
{ ADD INT |
INT—wo - f | === INT
INT = [ !
. mem—— | I
. m——— ! |
INT~ === i |
e e e +
NOTE 1 - If feature 2 is supported, the manufacturer shall provide a table of which functions are
overloaded and which are typed in the implementation.
NOTE 2 - User-defined functions cannot be overloaded.

When all the formal input parameters to a standard function defined in 2.5.1.5 are of the same generic
type, then ail the actual parameters shall be of the same type. if necessary, the type conversion
functions defined in 2.5.1.5.1 can be used to meet this requirement. The output vaiue of the function
shall then have the same type as the actual inputs. Exampies of the application of this rule are given
in figures 7 and 8.

Type declaration Usage
(ST language - subclause 3.3) (FBD language - subciause 4.3)
(ST language - subclause 3.3)
VAR o=t
A INT ; A===l 4 1--=C
B INT; B--=| i
C:INT; Foommt
END_VAR C := A4B ;
VAR tmr s ————— + to——t
A INT: A=--=|INT TO REAL}i---{ + |---C
B : REAL; 4o ——— + | |
C : REAL; Brmem e ———— | |
END_VAR R
C := INT_TO_REAL(A}+B ;
VAR -t b —————— +
A INT; A--—=| + |=-=--]INT TO REAL|---C
B:INT; Bew=—| | O -t
C . HEAL, o ————
END_VAR C := INT_TO_REAL (A+B)

NOTE - Type conversion is not required in the first example shown above.
Figure 7 - Examples of explicit type conversion with overloaded tunc}ions



-50- IEC DIS 11313

Type declaration Usage
(ST language - subclause 3.3) (FBD language - subclause 4.3)
(ST languags - subclause 3.3)
VAR FO— +
A CINT Be=w} ADD INT [===C
B :INT ; Bem=| i
G INT _ R — +
END_VAR C ;= ADD INT(A,B} o
VAR b 4 pmmm—m—— +
A INT; B-——]INT TO REAL{~--| ADD REAL |=---C
B :REAL; Y -+ | 1
 : REAL; | o e e e | !
END_VAR I *
C := ADD RERL (INT_TC_REAL(A)},B}
VAR T e P +
AINT A--=| ADD INT {--=~|INT TO REAL|---C
-8 iNT; | T S +
C . REAL; Be=m| |
END_VAR fem——— .
C := INT_TO REAL(ADD_INT(A,B}} ;

NOTE - Type conversion is not required in the first example shown above.
Figure 8 - Examples of explicit type conversion with typed functions

2.5.1.5 Standard functions

Definitions of functions common to all programmable controller programming languages are given in
this subclause. Where graphical representations of standard functions are shown in this subclause,
equivalent textual declarations may be written as specified in 2.5.1.3.

A standard function specified in this Subclause to be extensible is allowed to have a variable number
of inputs, and shall be considered as applying the indicated operation to each input in tum, e.9.,
extensible addition shall give as its output the sum of all its inputs. The maximum number of inputs of
an extensible function is an implementation-dependent parameter.

2.5.1.5.1 Type conversion functions

As shown in table 22, type conversion functions shall have the form *_TO_™, where "* is the type of
the input variable IN, and ™" the type of the output variable QUT, e.g., INT_TO_REAL.



IEC DIS 11313 -1

Table 22 - Type conversion function features

No. Graphical form tsage example Notes
e —————— +
i LA B A o] LT3 ;..,....... E2 ) i
e m—— + A = INT_TO_REAL(B} ; 2
&

{*} - input data typse, e.g., INT
{**} - Cutput data typs, e.g..REAL

{(*_TO_™) - Function name, e.g., INT_TO_REAL

o + 3
2 ANY REAL~---} TRUNC |=~--ANY IN A = TRUNC(B) ;
o + :
T + 4
3 ANY BIT=-=| BCD TO ** |[--=-ANY INT A= BCD_TO_INT(B);
frm e ———— +
frm e ———— + 4
4 ANY INT--t * TO BCD |---ANY BIT A= INT_TO_BCD(B);
e  a  m — +

NOTE 1 - A statement of conformance to feature 1 of this table shalt include a list of the
specific type conversions supported, and a statement of the effects of performing
each conversion.

NOTE 2 - Conversion from type REAL or LREAL to SINT, INT, DINT or LINT shall round to the
nearest integer, e.g.,

REAL_TO_INT(1.8) is equivalentto 2
REAL_TO_INT(-1.8)" =~ " -2
REAL_TO_INT(1.5) is equivalentto 2
REAL_TO_INT{-1.8y" " " .2
REAL_TO_INT(1.4) is equivalent to 1
REAL_TO INT(-1.4)" =~ " -

NOTE 2 - The function TRUNGC shall be used for truncation toward zero of a REAL or LREAL,
yielding one of the integer types, for instance,

TRUNC(1.6) is equivalent to 1
TRUNC(-18)" = " -1
TRUNC(1.4) is equivalent to 1
TRUNC(-1.4)" = = 4

NOTE 4 - The conversion functions * TO_BCD and BCD_TO_** are defined to perform
conversions between variables of type BYTE, WORD, DWORD, and LWORD and
variables of type SINT, INT, and DINT (represented by “*), when the commesponding
bit-string variables contain data encoded in BCD format. For example, the vaiue of
INT_TO_BCD(25) would be 2#0010_0101, and the value of BCD_TO_INT
(2#0011_0110_1001} would be 369.

NOTE 5 - When an input or output of a type conversion function is of type STRING, the
character string data shall conform to the external representation of the
corresponding data, as specified in 2.2, in the ISO 646 character set.

NOTE 6 - Usage examples are given in the ST language defined in 3.3.




-52- IEC DIS 1131-3

2.5.1.5.2 Numerical functions

The standard graphical representation, function names, input and output variable types, and function
descriptions of functions of a single numeric variable shall be as defined in tabie 23. These functions
shall be overloaded on the defined generic types, and can be typed as defined in 2.5.1.4. For these
functions, the types of the input and output shall be the same.

The standard graphical representation, function names and symbols, and descriptions of arithmetic
functions of two or more variables shall be as shown in table 24. These functions shall be overloaded

on all numeric types, and can be typed as defined in 2.5.1.4.

Table 23 - Standard functions of one numeric variable

- Graphical form Usage exampie
tome i ———— +
* e o | === * A = SIN(B) ;
mm—— e + (8T language - subclause 3.3}
(Y - Input/Cutput (/O) type
(**} - Function name
No. | Function name 0 type Description
General functions
1 ABS ANY_NUM Absolute value
2 SQRT ANY_REAL Square root
Logarithmic functions

3 LN ANY_REAL Natura! logarithm

4 LOG ANY_REAL Logarithm base 10

5 EXP ANY_REAL Natural exponential

Trigonometric functions

6 SIN ANY_REAL Sine of input in radians.

7 CcOos ANY_REAL Cosing " " ° "

8 TAN ANY_REAL Tangent™ = = -

9 ASIN ANY_REAL Principal arc sine
10 ACOS ANY_REAL Principal are cosine
11 ATAN ANY_REAL Principal arc tangent




{EC DIS 11313 -583-

Tabie 24 - Standard arithmetic functions

Graphical form Usage exampile
tom——— + :
ANY NUM === **% [=e- ANY NUM A = ADD(B.C,D};
ANY NUM =--| i or
-==1 ! A= B+C+D
ANY NUM --- g i
e e e e +
{***) - Name or Symbol
No. Narme Symbol (Note 1) Description (Noie 2,8)
Extensible arithmetic functions
12 ADD + QUT = INT « IN2 + ... + INn
13 MUL ¥ QUT = INT*IN2"*.."INn
Non-extensible arithmetic functions
14 SUB S QUT := IN1 - IN2
15 DIV / QUT = IN1/IN2 {Note 5)
16 MOD OUT = IN1 modulo IN2 (Note 3)
17 EXPT - Exponentiation: OUT = EXP(INZ"LN(IN1)) (Note 4)
18 MOVE e OUT = IN
NOTE 1 - These symbols are suitable for use as operators in textual languages, as shown in tables
52 and 55. -
NOTE 2 - T:e notations IN1, IN2, ..., INn refer o the inputs in top-to-bottom order; OUT refers to
the output. .

NOTE 3 - iN1 and IN2 shall be of generic type ANY_INT for this function. The result of evaluating
this function shall be the equivalent of executing the following statements in the ST
language as defined in subclause 3.3:

IF (IN2 = 0) THEN OUT := 0 ; ELSE OUT := IN1 - (IN1/IN2)*IN2 ; END_IF

NOTE 4 - IN1 shall be of type ANY_REAL, and IN2 of type ANY_NUM for this function. The ocutput

iy shall be of the same type as IN1.

NOTE 5 - The result of division of integers shall be an integer of the same type with truncation
foward zero, for instance, 7/3 = 2 and (-7)/3 = -2.

NOTE & - When the named representation of a function is supported, this shail be indicated by the
suffix "n" in the compliance statement. For example, "12n" represents the notation
"ADD™.

NOTE 7 - When the symbolic representation of a function is supporied, this shall be indicated by
the suffix "s" in the compliance statement. For example, "12s" represents the notation

N

+ .

NOTE 8 - Usage examples and descriptions are given in the ST language defined in Clause 3.3.



-84 - IEC DIS 11313

2.5.1.5.3 Bit string tunctions

The standard graphical representation, function names and descriptions of shift functions for a single
bit-string variable shall be as defined in table 25. These functions shall be overioaded on all bit-string
types, and can be typed as defined in 2.5.1.4.

The standard graphical representation, function names and symbols, and descriptions of bitwise

Boolean functions shall be as defined in table 26. These functions shall be extensible, except for NOT,
and overioaded on all bit-string types, and can be typed as defined in 2.5.1.4.

Table 25 - Standard bit shiff functions

Graphical form Usage example
Fom o +
forex | A = SHL(IN:=B, Ni=5) ;
ANY BIT =-~-|IN  |--= ANY BIT
ANY INT ---|N ; (ST language - subclause 3.3 )
tm————— +
(***} - Function Name

No. Name Description
1 SHL OUT := IN left-shifted by N bits, zero-filled on right
2 SHR QUT := IN right-shifted by N bits, zero-filled on left
3 ROR OUT := IN right-rotated by N bits, circular
4 ROL QUT := IN left-rotated by N bits, circular

NOTE - The notation "OUT" refers to the function output.

2.5.1.5.4 Selection and comparison functions

Selection and comparison functions shall be overicaded on all data types. The standard graphical
representations, function names and descriptions of selection functions shall be as shown in table 27.

The standard graphical representation, function names and symbols,and descriptibns of comparison
functions shall be as defined in table 28. All comparison functions (except NE) shall be extensible.

Comparisons of bit string data shall be made bitwise from the most significant to the least signiticant
bit, and shorter bit strings shall be considered to be filled on the left with zeros when compared to
longer bit strings; that is, comparison of bit string variables shall have the same result as comparison
of unsigned integer variables.



IEC DIS 1131-3

-85 .

Table 26 - Standard bitwise Boolean functions

Graphicat form Usage examples
Fm———— +
ANY BIT —==] #*#*%* |[~—=— ANY BIT A= AND(B,C,D) '
ANY BIT --- i ; or
. —— i A=B&C&D,;
ANY BIT =-==| |
N +
{(***y - Name or symbol
No. Name Symbol Description
) AND & (Note 1} QUT =INT&IN2& . &INn
6 OR >=1 (Note 2) QOUT = INTt OR IN2 OR ... OR INn
7 XOR =2k+1 (Note 2} QUT = IN1 XOR IN2 XOR ... XOR INn
8 NOT QUT = NOT IN1 (Note 4)
NOTE 1 - This symbol is suitable for use as an operator in textual languages, as shown in tables 52
and 55.
NOTE 2 - This symbol is not suitable for use as an operator in textual languages.
NOTE 3 - The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; QUT refers to
the output.
NOTE 4 - Graphic negation of signals of type BOOL can aiso be accomplished as shown in table
19,
NOTE 5 - When the named representation of a function is supported, this shall be indicated by the
sutlix *n" in the compliance statement. For example, "5n” represents the notation "AND".
NOTE 6 - When the symbolic representation of a function is supported, this shall be indicated by

the suffix "s" in the compliance statement. For example, "5s” represents the notation "&".

NOTE 7 - Usage exampies and descriptions are given in the ST language defined in 3.3.




e 56«

[EC DIS 11313

Table 27 - Standard selection functions

No. Graphical form Explanation/example
1 Fommm— + Binary selection:
! SEL | OQUT =INOCHG =0
BOQL-=-=1G j=em-ANY OUT = INTifG=1
et Ssamle
P N A = SEL{G=0,INO:=X IN1:=5) ;
2a o + Extensible maximum function:
| MAX | OUT = MAX {IN1,IN2, .. INn}
{NOTE 1} ::‘:i IE-’W——ANY Example:
(NOTE 1} ===| i A = MAX(B.C,D};
i +
2b o + Extensible minimum function:
| MIN | OUT := MIN {IN1,IN2, ...,INn}
(NOTE 1)=---]| j~——~BNY
. —— | Example:
(NOTE 1) ——-1 | A=MINBCD);
R +
3 R + Limiter:
i LIMIT | OUT := MIN(MAX(IN,MN),MX)
(NOTE 1)--|MN | —==-ANY Example:
(NOTE 1) --]IN | . .* foo Ny
(NOTE 1) == |MX l A = LIMIT(IN:=B,MN:=0,MX:=5};
tm—————— +
4 fune—— + Extensible muitipiexer:
| MUX | Select one of "N” inputs
ANY INT=-=--|K | ~wm—BNY depending on input K
ANY::: : Example:
AI;IY——- | A:=MUX(K:=0,IN0:=8B,IN1:=C,IN2:=D);
! would have the same effect as
Fomm—- + A=B:

NOTE 1 - These inputs can be of type ANY_BIT, ANY_NUM, STRING, ANY_DATE, or TIME.
The type conversion rules given in 2.5.1.4 shall be followed for these inputs.

NOTE 2 - The notations IN1, IN2, .., INn refer to the inputs in top-to-bottom order; OUT refers

to the output.

NOTE 3 - These symbols are suitable for use as operators in textual languages, as shown in

tables 52 and 55.

NOTE 4 - When the named representation of a function is supported, this shali be indicated by
the suffix "n" in the compliance statement. For example, "5n” represents the notation

"GT.

NOTE 5 - When the symbolic representation of a function is supported, this shall be indicated
by the suffix "s” in the compliance statement. For example, "5s” represents the

notation ">".

NOTE & - Usage examples and descriptions are given in the ST language defined in 3.3.




IEC DIS 1131-3 « &7 -

Table 28 - Standard comparison functions

Graphical form Usage examples
f—— +
{(NOTE 1)}==| **%* |-—- BOOL A= GT(B.C.D) '
: -] { o
{NOTE 1}=-1 i
e e + A=(B>C} & {C-0);
{(***) - Name or Symbo!
No. Name Symbeol Description
5 GT > Decreasing sequence:
OUT = (INT>IN2) & (IN2>IN3}) & ... & (INn-1 > INn)
6 GE »= Monotonic sequence:
OUT 1= (IN1>=IN2) & {IN2>=IN3} & ... & (INn-1 »= INn)
7 EQ = Equality:
_ OUT = (IN1=IN2) & (IN2=IN3) & ... & (INn-1 = INn}
8 LE < wMonolonic sequence:
OUT := (IN1<=IN2} & (IN2<=IN3) & ... & {INn-1 <= INn}
9 LT < increasing segquence: -
OUT := {IN1<IN2) & (IN2<IN3) & ... & {INn-1 < INn)
i0 NE <> inequality (non-exiensible): ' '
OUT = (IN1 < IN2)

NOTE 1 - These inputs can be of type ANY_BIT, ANY_NUM, STRING, ANY_DATE, or TIME.
The type conversion rules given in 2.5.1.4 shall be foliowed for these inputs.

NOTE 2 - The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers
to the output.

NOTE 3 - All the symbols shown in this table are suitable for use as operators in textual
languages, as shown in tables 52 and 55.

NOTE 4 - When the named representation of a function is supported, this shall be indicated by
the suffix "n” in the compliance statement. For example, “5n” represents the notation
nGT"

NOTE 5 - Whenthe symboinc representation of a function is supported, this shall be indicated
by the suffix "s” in the compliance statement. For example, "5s” represents the
notation ™",

NOTE & - Usage examples and descriptions are given in the ST language defined in 3.3.




« 58 « IEC DIS 11313

2.5.1.5.5 Character string functions

All the functions defined in 2.5.1.5.4 shall be applicable to character strings. For the purposes of
comparison of two strings of unequal length, the shorter string shall be considered to be extended on
the right to the length of the longer string by characters with the value zero. Comparison shall
proceed from left to right, based on the numeric value of the character codes in the iSO 646 code
table. For example, the character siring 'Z' shall be greater than the character string AZ, and AL
shall be greater than 'ABC’. »

The standard graphical representations, function names and descriptions of additional functions of
character strings shall be as shown in table 28. For the purpose of these operations, character
positions within the string shall be considered to be numbered 1,2,....L, beginning with the leftmost
character position, where L is the length of the string.

Table 28 - Standard character string functions

No.

Graphical form

Explanation/example

String length function
Example:

A = LENCASTRING')

is equivalentto A = 7;

| LEFT
STRING---~|IN
ANY INT---IL

[
| ~=-STRING

Lettmost L characters of IN
Example:
A= LEFT(IN:='ASTR' L:=3};
is equivalent to
A ="AST ;

i RIGHT
STRING----1{IN
ANY INT---{L

f
| -=STRING

Rightmost L characters of IN
Example:
A = RIGHT(IN:='ASTR',L:=3);
is equivalent 1o
A:="'STR';

| MID
STRING----|IN
ANY INT---|L

!
i —~STRING

i

ANY INT---|P i

L characters of IN,
beginning at the P-th

Exarmple:
A = MID{IN:="ASTR' L.:=2,P:=2),
is equivalent to
A ="ST;

| CONCAT |
STRING--~| | -=STRING

STRING~--~| {

Extensible concatenation
Example:
A = CONCAT(AB''CD''EY);
is equivalent to
A :="'ABCDE;

| INSERT i
STRING---|IN1
STRING---|INZ I
ANY INT--|P I

| ==STRING ..

Insert IN2 into IN1 after the
P-th character position
Example:
A:=INSERT(IN1:="ABC',IN2:='XY",P=2);
is equivalent to
A = ABXYC',

(continued on following page}




IEC DIS 1131-3 <59~

Table 29 - Standard character string functions - continued

No. Graphical form Expianation/example
7 o ———— + Delete L characters of IN, beginning
| DELETE | at the P-th character position
STRING-=~1{IN | --STRING Exarmple:
ANY INT--iL f A = DELETE(IN:='ABXYC' L:=2, Pi=3) |
ANY INT--I|P ! is equivalent to
Fom + : A = 'ABC",;
g oo o + Replace L characters of IN1 by IN2,
| REPLACE | starting at the P-th character position
STRING---]IN1 [ -=STRING Examie:
STRING---|INZ ! A = REPLACE(IN1:='ABCDE',IN2i='X,
ANY INT--|L E L2 P=3);
ANY INT--iP ! is equivalent to
Fremmmm o + A :="ABXE';
g o + Find the character posttion of the beginning
| FIND | of the first occurrence of IN2 in INT. i no
STRING-=-=|IN1 [==—~INT occurrence of IN2 is found, then OUT = 0.
STRING~=-=-{IN2 ! Example:
Fommmmm— M A = FIND(IN1:='ABCBC",IN2:='BC") ;
is equivalentto A =2 ;
NOTE - The examples in this table are given in the Structured Text (ST) language defined in 3.3.

2.5.1.5.6 Functions of time data types

in addition to the comparison and selection functions defined in 2.5.1.5.4, the combinations of input
and output time data types shown in table 30 shall be allowed with the associated functions.

2.5.1.5.7 Functions of enumerated data types

The selection and comparison functions listed in table 31 can be applied to inputs which are of an
enumerated data type as defined in 2.3.3.1.



<80 -

Table 30 - Functions of time data types

IEC DIS 11313

Numeric and concatenation functions

No. Name Symbol IN1 IN2 ouT

1 ADD + TIME TIME TIME

2 TIME_QF_DAY TIME TIME_OF DAY
3 DATE_AND_TIME TIME DATE_AND _TIME
4 suB - TiME TIME TIME

5 DATE DATE ~ TIME

& TIME_OF_DAY TIME TiIME_OF_DAY
7 TIME_OF_DAY TIME_OF_DAY TIME

8 DATE_AND_TIME TIME DATE_AND_TIME
g DATE_AND_TIME | DATE_AND_TIME TIME
10 MUL" ° TIME ANY_NUM TIME
11 DIV / TIME ANY_NUM TIME
12 | CONCAT DATE TIME_OF DAY DATE_AND_TIME

Type conversion functions

13 DATE_AND_TIME_TO_TIME_OF_DAY

14

DATE_AND_TIME_TO_DATE

NOTE - The type conversion functions shall have the effect of "extracting” the appropriate data,

e.g., the ST language statements

X := DT#1986-04-28-08:40:00 ;

Y := DATE_AND_TIME_TO_TIME_OF_DAY(X) ;
W := DATE_AND_TIME_TO_DATE(X)

shall have the same result as the statements
X .= DT#1986-04-28-08:40:00 ;

W = DATE#1386-04-28 ;

Y := TIME_OF_DAY#08:40:00

Table 31 - Functions of enumerated data types

No. { Name | Symbol Feature numberin 2.5.1.54
1 SEL 1
2 MUX 4
3 EQ = 7
4 NE <> 10



IEC DIS 1131-3 - G1 -

2.5.2 Function blocks

For the purposes of programmable controlier programming languages, a function block is a program
organization unit which, when executed, yields one or more values. Multiple, named instances
(copies) of a function block can be created. Each instance shall have an associated identifier (the
instance name), and a data structure containing its output and intemnal variables, and, depending on
the implementation, values of or references to iis input parameters. All the values of the output
variables and the necessary internal variables of this data structure shall persist from one execution of
the function biock to the next; therefore, invocation of a function block with the same arguments {input
parameters) need not always yield the same output values.

Only the input and output parameters shall be accessibie outside of an instance of a function block,
i.e., the function block's internat variables shall be hidden from the user of the function biock.

Execution of the operations of a function block shall be invoked as defined in clause 3 for texiual
languages, according to the rules of network evaluation given in clause 4 for graphic languages, or
under the control of sequential function chart (SFC) elements as defined in 2.6.

Any function block which has aiready been declared can be used in the declaration of another function
block or program as shown in figure 3.

The scope of an instance of a function block shall be focal to the program organization unit in which it
is instantiated, unless it is declared to be global in a VAR_GLOBAL block as defined in 2.7.1.

As illustrated in 2.5.2.2, the instance name of a function block instance can be used as the input to a
tunction or function block if declared as an input variable in a VAR_INPUT declaration, or as an
input/output variable of a function block in a VAR_IN_OUT declaration, as defined in 2.4.3.

2.5.2.1 Representation

As illustrated in figure 8, an instance of a function block can be created textually, by declaring a data
element using the declared function block type in a VAR..END_VAR construct, identically 1o the use
of a structured data type, as defined in 2.4.3.

As further illustrated in figure 9, an instance of a function block can be created graphically, by using a
graphic representation of the function block, with the function biock type name inside the biock, and
the instance name above the block, following the rules for representation of functions given in 2.5.1.1
with the following additional conditions:

1) The size and orientation of the block may vary depending on the number of inputs, outputs, and
other information to be displayed. :

2) Formal input and output parameter hames shall be shown at the inside left and right sides of .
the block, respectively.

As shown in figure 9, input and output variables of an instance of a function block can be represented
as elements of structured data types as defined in 2.3.6.1.

If either of the two graphical negation features defined in table 19 is supported for function blocks, it
shall also be supported for functions as defined in 2.5.1, and vice versa.

Functicn block instancés can be declared to be retentive, as shown in feature 3 of 1able 33.



- 82 - ECDIS 11313

Graphical (FBD language) Textual (ST language)
FF75S
o — + VAR FF75: SR; END_VAR {* Declaration *)
ISR | FF75(S1:=%1X1, R:=%IX2); (* Invocation *}
$IX1-~-1S1 Ql|---%0QX3
RINZ === R I $QX3 := FF75.01 {* Assign Output *)
o e e o + ‘
Figure 9 - Function biock instantiation example e

Assignment of a value 1o an output variabie of a function block is not allowed except from within the
function block. The assighment of a value to the input of a function block is permitted only as part of
the invocation of the function block. Allowable usages of function block inputs and outputs are
summarized in table 32, using the function block FF75 of type SR shown in figure 8. The examples

are shown in the ST language.

Table 32 - Examples of function block /O parameter usage

Usage Inside function block Qutside function biock
input read IF 81 THEN ... Not allowed (Note 1,2)
Input write Not alliowed (Note 1,3) FF75(51:=%IX1,R:=%iX2);

Output read Q1:=Q1 ANDNOTR; %QX3 = FF75.Q1;
Output write Q1:=1; Not Allowed (Note 1)

NOTE 1 - Those usages listed as “Not Allowed” in this table could lead to implementation-

dependent, unpredictable side effects.

NOTE 2 - Reading of an input of a function block may be performed by the “communication
function®, “operator interface function”, or the "programming, testing, and montoring

functions” defined in Part 1 of this standard.

NOTE 3 - As illustrated in 2.5.2.2, moditication within the function block of a variable declared in

a VAR_IN_OQUT block is permitted.




IEC DIS 11313 ' -63 -

2.5.2.2 Declaration

As illustrated in figure 10, a function block shall be declared textually or graphically in the same
manner as defined for functions in 2.5.1.3, with the differences described below and summarized in
table 33:

1) The delimiting keywords for declaration of function blocks shall be FUNCTION_BLOCK...
END_FUNCTION_BLOCK.

2} A function block can have more than one outpul parameter, declared textually with the
VAR_OUTPUT...END_VAR construct defined in 2.4.3, or graphically as illustrated in figure 10.

3) The RETAIN qualifier defined in 2.4.3 can be used for internal and output variables of a function
block, as shown in features 1, 2, and 3 in table 33.

4) The values of variables which are passed to the function block via a VAR_IN_OUT or
VAR_EXTERNAL construct can be modified from within the function block, as shown in feature
4 of table 33.

5) The output values of a function block instance whose name is passed into the function block via
a VAR_INPUT, VAR_IN_QUT, or VAR_EXTERNAL construct can be accessed, but not
modified. from within the function block, as shown in features 5, 6, and 7 of table 33.

6) A function block whose instance name is passed into the function block via a VAR_IN_OUT or
VAR_EXTERNAL construction can be invoked from inside the function block, as shown in
features 6 and 7 of table 33.

7) In textual declarations, the R_EDGE and F_EDGE qualifiers can be used to indicate an edge-
detection function on Boolean inputs. This shall cause the implicit declaration of a function
block of type R_TRIG or F_TRIG, respectively, as defined in 2.5.2.3.2, to perform the required
edge detection. For an example of this construction, see features 8a and 8b of table 33 and the
accompanying NOTE.

8) The construction illustrated in table 33, features 9a and 9b shall be used in graphical
decilarations for rising and falling edge detection. When the ISO 646 character set is used, the
~greater than” (>} or "less than" (<) character shall be in fine with the edge of the function block.
When graphic or semigraphic representations are employed, the notation of IEC 617, Part 12
for dynamic inputs shall be used.

9) The variable initialization constructs defined in 2.4.3.2 can be used for the declaration of default
values of function block inputs and initial values of their intemal and output variables.

As illustrated in figure 12, only variables or function block instance names can be passed into a
function block via the VAR_IN_OUT construct, i.e., function or function block outputs cannot be
passed via this construction. This is to prevent the inadvertent modifications of such outputs.
However, "cascading” of VAR_IN_OUT constructions is permitted, as illustrated in figure 12c.



(a)

(b)

FUNCTION BLOCK DEBOUNCE
{**» External Interface ***)}

VAR INPUT
IN : BOOQL {* Default = 0 *}
DB TIME TIME := t£#10ms ; {* pDefault = £$10ms *)}
END VAR
VAR OQUTPUT OUT : BOOL ¢ {* Default = 0 %)
ET OFF : TIME {* Default = t#0s *)
END VAR ' .
VAR DB ON s TON {(*# Internal Varlables =*w;
DB OFF : TON {** apgd FB Instances %%
DB FF : SR H
END VAR

{** Function Block Bedy **}
DB ON(IN:=IN, PT:=DB TIME} -

DB OFF(IN := NOT IN, PT:=DB TIME) ;
DB FF(S1:=DB ON.,Q, R:=DB OFF.Q} ;
QUT := DB FF.Q ;.

ET_OFF := DB_OFF.ET ;

END_FUNCTION_BLOCK

FUNCTION BLOCK
(** External Interface **)

| DEBOUNCE !
BOOL--~11IN QUT|---BOCL
TIME---|DB TIME ET OFF|~--TIME

DB ON DB FF
fmm——— + tommmt
[ TON | ] SR |
IN====tmmmmmm |IIN Qf~=---- 181 Qf=-=--0UT
| +===[PT ET| +-~|R |
P oo + | tme——+
Pl |
Lo DB OFF |
b Fmm——— +
P i TON | |
+==|==Q|IN Qi=-=+
DB TIME-=+--=-|PT ET|========mm==—— ET OFF
——— +

END_FUNCTION_BLOCK

Figure 10 - Examples of function block declarations
(a) Textual declaration in ST language (subclause 3.3)
(b) Graphicat declaration in FBD language (subclause 4.3)

IEC DIS 11313




iEC DIS 1131-3

Table 33 - Function block declaration features

No. Description Example
1 RETAIN qualifier on internal variables VAR RETAIN X : REAL ; END_VAR
2 RETAIN qualifier on output variables VAR_OUTPUT RETAIN X REAL ; END_VAR

RETAIN qualifier on internal function blocks

VAR RETAIN TMR1: TON ; END_VAR

VAR_IN X: INT; END_VAR

43 input/output declaration {textual) VAR_IN_OUT A INT ; END_VAR
A= AvX
4b input/output declaration (graphicai) See figure 12
5a | Function block instance name as input | VAR_INPUT I_TMR: TON ; END_VAR
{textual) EXPIRED = [_TMR.C: {*NOTE17)
5b Function biock instance name as input See figure 11a
(graphical)
6a Function biock instance name as VAR_IN_OUT IO_TMR: TOF : END_VAR
£XPIRED := IO_TMR.Q: (* NOTE 1)
&b Function block instance name as See figure 11b
input/output (graphical)
7a | Function block instance name as external | VAR_EXTERNAL EX_TMR : TOF ;END_VAR
variable (textual) EX_TMR(IN:=A_VAR, PT:=T#10S);
EXPIRED := EX_TMR.Q; ("NOTE1%)
70 | Function block instance name as external See figure 11¢ -
variable {graphical)
Textual declaration of: | FUNCTION_BLOCK AND_EDGE (*NOTE2")
8a | rising edge inputs VAR_INPUT X : BOOL R_EDGE; :
8b | falling edge inputs Y : BOOL F_EDGE;
END_VAR
VAR_QUTPUT Z : BOOL ; END_VAR
Z=XANDY; (* ST language example -see3.3 )
END_FUNCTION_BLOCK
FUNCTION BLOCK {(* NOTE 2 *)
fmm e ——— + {* External interface *)
Graphical declaration of: | AND EDGE |
Sa rising edge inputs BOQL-==>X Z|=--BOOL
] [
ob failing edge inputs BOOL~-——-<Y¥ f
! {
- ——————— +
ot {* Function block body *)
Kr==| & |==-2 (= FBD language example *)
L===| ! (* =~ see 4.3 *)
o ’

END_FUNCTION_BLCCK

{continued on foliowing page)




.66 - [EC DIS 1131-3

Table 33 - Function block declaration features - continued

NOTE 1 - It is assumed in these examples that the variables EXPIRED and A_VAR have beer
declared of type BOOL.

NOTE 2 - The declaration of function block AND_EDGE in the above examples is equivalent to:

FUNCTION_BLOCK AND_EDGE
VAR_INPUT XCLK: BOOL; YCLK: BOOL; END_VAR
VAR X_TRIG: R_TRIG; Y_TRIG: F_TRIG; END_VAR
X_TRIG(CLK = XCLK); ¥ = X_TRIG.Q;
Y_TRIG(CLK = YCLK); Y = Y_TRIG.Q;

Z= XANDY ;

END_FUNCTION_BLOCK

See 2.5.2.3.2 for the definition of the edge detection function blocks R_TRIG and F_TRIG.

FUNCTION BLOCK
{* External interface *}

e e o +
|  INSIDE & |
TON---|1 TMR EXPIRED|---BOOL
e o +
I TMR (* Function Block body *)
tom—— +
| TON |
[IN Q{---EXPIRED
|PT ET|
tommm—— +

END_FUNCTION_BLOCK

FUNCTICON BLOCK

fom e ————————— + {* External interface *}
| EXAMPLE A H
BOOL-~~ (GO . DONE}---BOCL

fommm————— - ———— +
E TMR (* runcticon Block body *)
PO + I BLK
{ TON i tos s ———————— +

Go-=-=1IN O i INSIDE A ]

t#100ms---|PT ET] E TMR---{I TMR EXPIRED|---DONE

END_FUNCTION_BLOCK

Figure 11a - Graphical use of a function biock name as an input variable
(Table 33, feature 5b)




IEC DIS 1131-3

FUNCTION BLOCK
{(* External interface *)

i INSIDE B |
TON---1I TMR--~-I TMR|=~=~~TON

BOOL~~|TMR GO EXPIRED|~--BOOL

o +
I THMR {(* Function Block body *i
e ——— +
| TON |

TMR GO--=-}IN Q|-~-EXPIRED
|PT ET|
o +
END_FURCTION_BLOCK

FUNCTION BLCOCK
(* External interface *)

P ———————— +
| EXAMPLE B !
BOOL~--1|GO DONE | -——BOOL
o ————— +
E TMR (* Functicn Block body *)
e it + I BLK
| TON i tmm e +
{IN Qf | INSIDE B }
t#100ms-~~|PT ET| E TMR---|I TMR-==-- I TMR}
oo + GO=m === |TMR GO EXPIRED|---DONE
+

END_FUNCTION_BLOCK

(Table 33, feature 6b)

Figure 11b - Graphical use of a function block name as an input/output variable



ECDIS 11313

.ﬁﬂ
FUNCTION BLOCK
tmm—————————— + (* External interface *)
; INSIDE C !
BOOL-~|TMR GO EXPIRED|~-~BOOL
e +

VAR EXTERNAL X TMR: TON; END VAR
{* Punction Block body *}

P TON
TMR GO~~~ |IN Q}---EXPIRED
IPT ET{

END_FUNCTION_BLOCK

PROGRAM
{* External interface *)

| EXAMPLE C |
BOOL-=-~ | GO DONE | --~BOOL

VAR GLOBAL X_TMR: TON; END_VAR

I BLX (* Program body *)
o e + _
] INSIDE C |
GO---——- {TMR GO EXPIRED|--~-DONE
ettt e e e +
END_PROGRAM

NOTE - PROGRAM declaration is defined in 2.5.3.

Figure 11c - Graphical use of a function block name as an external variable

(Table 33, feature 7b)



IEC DIS 1131-3

(a) R + FUNCTION_BLOCK ACCUM
| ACCUM |
INT~=={Aw===- 2|---INT VAR_IN_OUT A:INT; END_VAR
INT---|X | VAR_INPUT X :INT; END_VAR
o e +
R
Am=m| 4 jwoeh A e A
K | I END_FUNCTION_BLOCK
F——
(&) ACC1 NOTE - A declaration suchas
o o o 2 + . .
| ACCUM | VAR ?(EC: .::qh_li_T_,
ACC-—--:::::--- ;A ————— Aif -~=RCC X2 L INT -
Kiomm| * |omm|X | . END_VAR
X2-——| A + is assumed.
_ e
c ACC1 ACC2
. G + P . NOTE -
| accM | | ACCUM | Declarations
ACC—mmmmm—mm [ — Almmmmmmmem——————— [ S— Al-m- as in (b) are
ACC assumed for
+.,..._.+ i i oo —— I | ACC, X1, x2,
Xi-—-—] * |===I|X ; X3——=] * |===|X i X3, and X4.
X2---] | dem————- +  Xd---| | fmmmm——— +
+m—— +om—dt
(d) ACC1
et tmme———— " NOTE - ILLEGAL USAGE:
Xl-——] * | | ACCUM | Input/output A is not a variable
X2=—==| [mme | Am———— A|---ACC or function block name
P , l - see preceding text
X3emmmmm IX | ‘
e ————— +

Figure 12 - Examples of use of input/output variables
a) Graphical and textual declarations
b,c) Legal usage
d) lilegai usage




.70 - IEC DIS 1131-3

2.5.2.3 Standard function blocks

Definitions of function blocks common to all programmable controller programming languages are
given in this subclause.

Where graphical declarations of standard function blocks are shown in this subclause, equivalent
textual declarations, as specified in 2.5.2.2, can also be written, as for example in tabie 35.

2.5.2.3.1 Bistabie slements

The representation and function block bodies for standard bistable elements are shown in table 34.
The notation for these elements is chosen to be as consistent as possible with symbols 12-05-01 and
12-09-02 of IEC 617-12.

VAR EXTERNAL PRINTER: SEMA: END VAR

| o e +
pomm e a——— + | N | CLAIM PRINTER |
| START PRINT |=w==- b —————— +
e + | PRINTER (CLAIM := 1);]|

| o e + /

Fmm————— + oo b e e fusmm—————— +
| PRINT j====————— §{ N § PRINT TEXT | PRINT DONE |

Fmm———— + o e e frmmm——————— +

+ PRINT DONE

i o o e e +

Frm e ——————— + | P | RELEASE PRINTER ]
| RELEASE PRINTER |=mtmmm oo oo e e e e e e e +
fommm———————— + | PRINTER(CLAIM := 0, RELEASE := 1); |
o e e +

Figure 13 - Semaphore usage example
(See Note 4 of tabie 34)



{EC DIS 1131-3

.71

Table 34 - Standard bistable function blocks

No. Graphical form Function block body
1 Bistable Function Block (set dominant) (Notes 1.2)
fm———— +
o + Gl e m——————— | »=l j==-Ql
I SR | e [ §
BOOL~=={51 Q1|~=-BOOL R oo Ot & |—===1| i
BOOL---IR i Q= P i !
oo o = + 4 e +
2 Bistable Function Block {reset dorninant) (Notes 1.2}
o + e
| RS | Rl mmmmmm e — e ol & |-—-0Q1
BOOL~-~1S Q1|---BOCL it + b
BOCL=---|R1 1 e il | »=l |e=—=-| i
#mm + Q1=m=mme z s b
o ——— + =t
3 Semaphore with non-interruptible “Test and Set™ (Notes 3, 4,5 .6 )

fom— +

1 SEMA |
BOOLw--=|CLRIM BUSY|---BOOL
BOOL-~- |RELEASE {

o —————— +

VAR X :BOOL :=0; END_VAR

BUSY = X ;

IFCLAIM THEN X =1,

ELSIF RELEASE THEN BUSY =0, X = 0;
END_IF

NOTE 1 - The function block body is specified in the Function Block Diagram (FBD) language

defined in subclause 4.3.

NOTE 2 - The initial state of the output variable Q1 shall be the normal defautt value of zero for

Boolean variables.

NOTE 3 - The function block body is specified in the Stmdured Text (ST) language defined in

NOTE 4 - This function
resources; therefore, the first two stat

NOTE 5 - User programs must co-0p

subclause 3.3.

block is intended to be used for controlling access 10 operating system
ements in the function block body, namely,

BUSY = X; IFCLAIMTHENX =1

shall be non-interruptible.

erate in such a way that only the “owner” of a semaphore,

that is, the most recent entity to successtully assert a CLAIMon a non-BUSY
semaphore, can RELEASE the semaphore.

NOTE 6 - Figure 13 shows a program fragment using a semaphore declared as VAR_GLOBAL to
control access to a printer resource, using SFC elements (see 2.6).




~ {2~ IEC DIS 11313

2.5.2.3.2 Edge detection

The graphic representation of standard rising- and falling-edge detecting function blocks shall be as
shown in table 35. The behaviors of these biocks shall be equivalent to the definitions given in this
table. This behavior corresponds to the following rules: o

1) The 0" output of an R_TRIG function block shall stand at the Boolean "1* value from one
execution of the function block to the next, following the "0" to "1" transition of the "CLK" input,
and shali return to "0" at the next execution.

2) The "Q" output of an F_TRIG function block shall stand at the Boo!ean' *{" value from one
execution of the function biock to the next, foliowing the "1 1o "0" transition of the "CLK" input,
and shall return o 0" at the next execution.

Table 35 - Standard edge detection function biocks
No. Graphical form Definiticn {ST language - subclause 3.3}

1 Rising edge detector

FUNCTION_BLOCK R_TRIG

O + VAR_INPUT CLK: BOOL; END_VAR
| R TRIG | VAR_QUTPUT Q:BOOL; END_VAR
BOOL---{CLK  Q|---BOOL VAR M: BOOL := 0; END_VAR;

LA * Q := CLK AND NOT M;

M = CLK;
END_FUNCTION_BLOCK
2 Falling edge detector

FUNCTION_BLOCK F_TRIG

PR + VAR_INPUT CLK: BOOL; END_VAR
| F TRIG | VAR_OUTPUT Q:BOOL; END_VAR
BOOL---|CLK  Q-=-BOOL VAR M:BOOL := 1; END_VAR’

fmmmmmemm + Q := NOT CLK AND NOT M;
M := NOT CLK;

END_FUNCTION_BLOCK




IEC DIS 1131-3

2.5.2.3.3 Counters

The graphic representations of
inputs and outputs, shall be as s

standard counter function blocks, with
hown in table 36. The operation of these function blocks s

specified in the corresponding function block bodies.

Tabie 36 - Standard counter function blocks

No. Graphical form Function block body
) {ST language - subciause 3.3)
1 Lp-counter
‘?‘;,};‘j IFRTHENCV =0
HOOL-nw>CU Q| -=-BOOL ELSIFCU Ai\?D (CV < PVmax)
THEN CV = CV+1:
BOOL---iR END_IF;
INT-==|PV CV{=~~INT Q= (CV 5= PV} ;
B -+
2 Down-counter
T’;;;"i‘ IFLDTHENCV =PV .
5OOL--=>CD Q| =-~BOOL ELSIFCD Al\fD (CV > PVmin)
THEN CV = CV-1;
BOOL_"" | LD | END !F .
INT~=={PV CV{-=-INT Q=(CV<=0):
fmm +
3 Up-down counter
o ———— + IFRTHENCV =0 ;
| CIUD | ELSIFLD THEN CV = PV |

BOOL--->CU  QU{---BOOL
BOOL--->CD QD [~--BOOL
BOOL--- IR l
BOOL~~-- | LD |
INT--=|PV CV|---INT

ELSIF CU AND (CV < PVmax)
THEN CV 1= CV+1;

ELSIF CD AND (CV > PVmin)
THEN CV := CV-1;

END_IF ;

QU = (CV >= PV) ;

QD ;= (CV <= 0) ;

NOTE - The numerical values of the limit variables PVmin and PVmax ar

dependent.

the types of the associated

e implementation-




2.5.2.3.4 Timers

The graphic form for standard timer function blocks shall be as shown in table 37. The operation of
these function blocks shall be as defined in the timing diagrams given in tabie 38,

74 -

IEC DIS 11313

Table 37 - Siandard timer function blocks

No, Description Graphical form
1 *wx {g: TP {(Pulse} fmmm——— + .
2a TON (On-delay} L :I = Qi
BOOL~-~|IN ~==BOOL
25 T--=0  (On-delay) TIME---[PT  ET|---TIME
3a TOF {Off~delay) e e &
3b Q=T {QOff-delay)
4 Real-time clock
PDT = Preset date and time, fmmm———— +
lvaded on rising edge of EN { RTC |
CDT = Current date and time, BOQL~=~|EN Qi---BOOL
valid when EN=1 BT----- IPDT CDT}----~ bT
Q = copy of EN T ¥

NOTE - In textual languages, features 2b and 3b shail not be used.

Table 38 - Standard timer function biocks - timing diagrams

Pulse (TP) timing
o o e e o + ++ ++ o +
IN I i b I J
——t Fow $pmbho—mt tmm—————
t0 £l £2 t3 td t5
tomm—t e R it
Q I | [ !
-—+ o m———— + ot T
t0  tO+PT T2 T2+PT t4 t4+PT
PT o + +-——t
: / | /1 / I
ET : / t /o / ]
/ [ I }
/ I / I / I
Q= tmm———— + = o
t0 tl t2 t4 ts

(continued on following page)



76 - C ECDIS 11313

2.5.2.3.5 Communication function blocks

Standard communication function blocks for programmabile controllers are defined in 1EC 1131-5.
These function blocks provide programmable communications functionality such as device verification,
polled data acquisition, programmed data acquisition, parametric control, interlocked cortrol,
programmed alarm reporting, and connection management and protection.

2.5.3 Programs

A program is defined in 1EC 1131-1 as & "logical assembly of all the programming language eiements
and constructs necessary for the intended signal processing required for the control of a machine or
process by a programmable controiler system.”

Subciause 1.4.1 of this part describes the place of programs in the overall software modei of a
programmable controller; subclause 1.4.2 describes the means available for inter- and intra-program
communication: and subclause 1.4.3 describes the overall process of program development.

The declaration and usage of programs is identical to that of function blocks as defined in 2.5.2.1 and
2.5.2.2, with the additional features shown in table 38 and the foliowing differences:

1) The delimiting keywords for program declarations shall be PROGRAM...END_PROGRAM.

2} A program can contain a VAR_ACCESS...END_VAR construction, which provides a means of
specitying named variables which can be accessed by some of the communication services
specified in Part 5 of this Standard. An access path associates each such variable with an
input, output or internal variable of the program. The format and usage of this declaration shall
be as described in 2.7.1 and in Part 5 of this Standard.

3) Programs can only be instantiated within resources, as defined in 2.7.1, while function blocks
can only be instantiated within programs or other function biocks.

The declaration and use of programs are illustrated in figure 19, and in examples F.7 and F.8 of annex
F.

Table 39 - Program declaration features

No. DESCRIPTION
1-8b Same as features 1 1o 9b, respectively, of table 23
10 Formal input and output parameters
11-14 Same as features 1 - 4, respectively, of table 17
15-18 Same as features 1 - 4, respectively, of table 18
19 Use of directly represented variables (subclause 2.4.1.1)
20 VAR_GLOBAL...END_VAR declaration within a PROGRAM (see 2.4.3 and 2.7.1)
21 VAR_ACCESS...END_VAR declaration within a PROGRAM




IEC DIS 1131-3 =75 -

Table 38 - Standard timer Function Blocks - timing diagrams - continued

On-delay (TOR) timing
Fom————— + ot et L Pl +
IN 1 ; i | i {
- i e + gme— o oo
£0 i €2 t£3 t4 £5
rom o e o e e
Q ! I | }
——————— <+ b e e o o e e s o
tO+PT til c4+PT  t5
BT o ot
/ | + / !
ET / ! /1 / i
/ | A / i
: / ! /o / i
. 0-—+ Fmm e —— + o R e Tt
£0 tl t2 t3 t4 t5
Off-delay (TOF) timing
Frm e ———— + =t e e o e +
IN | i | i [ f
—-—— drmm— s m— + ot Frm e ————
t0 £l t2 t3 t4 t5
e —————————— + e ——— +
Q } ! | I
———t +m——t tmm————
to £1+BT t2 t5+PT
PT ot tun————
/ | + /
ET / { /| /
/ ! /o /
/ ! /o /
fovmmm e ——— + o tormnn——— +
tl £3 t5




IEC DIS 1131-3 - 77 =

2.6 Sequential Function Chart (SFC) elements

2.6.1 General

This subclause defines sequential function chart (SFC) elements for use in structuring the internal
organization of a programmable controller program organization unit, written in one of the languages
defined in this standard, for the purpose of performing sequential control functions. The definitions in
this subclause are derived from IEC 848, with the changes necessary to conver the representations
from a documentation standard to a sel of execution control elements for a programmable controller
program organization unit. : :

The SFC elements provide a means of partitioning a programmable controlier program organization
unit into a set of steps and transitions interconnected by directed links. Associated with each stepis a
set of actions, and with each transition is associated a transition condition.

Since SFC elements require storage of state information, the only brogram organization units which
can be structured using these elements are function blocks and programs.

If any part of a program organization uni is partitioned into SFC elements, the entire program -
organization unit shall be so partitioned. It no SFC partitioning is given for a program organization
unit, the entire program organization unit shall be considered to be a single action which executes
under the control of the invoking entity.

2.6.2 Steps

A step represents a situation in which the behavior of a program organization unit with respect to its
inputs and outputs foliows a set of rules defined by the associated actions of the step. A step is ether
active or inactive. At any given moment, the state of the program organization unit is defined by the
set of active steps and the vaiues of its internal and output variables.

As shown in table 40, a step shall be represented graphically by a block containing a step name in the
form of an identifier as defined in 2.1.2, or texiually by a STEP...END_STEP construction. ~ The
directed link(s) into the step can be represented graphically by a vertical line attached to the top of the
step. The directed link(s) out of the step can be represented by a vertical fine attached to the bottom
of the step. Alternatively, the directed links can be represented textually by the TRANSITION...

END_TRANSITION construction defined in 2.6.3. SR :

The step flag (active or inactive state of a step) can be represented by the logic value of a Boolean
structure element ***.X, where *** is the step name, as shown in table 40. This Boolean variable has
the value “1" when the coresponding step is active, and "0 when it is inactive. The state of this
variable is available for graphical connection at the right sile of the step as shown in table 40.

o,

Similarly, the elapsed time, ™".T, since initiation of a step can be represented by a structure element
of type TIME, as shown in table 40. When a step is deactivated, the value of the step elapsed time
shall remain at the value it had when the step was deactivated. : .

The scope of step names, step flags, and step times shall be local to the program organization unit in
which the steps appear.

The initial state of the program organization unit is represented by the initial values of its interal and
output variables, and by its set of initial steps, i.e., the steps which are initially active. Each SFC
network, or its textual equivalent, shall have exactly one initial step. :

An initial step can be drawn graphicaily with double lines for the borders, and with the 1SO 646 ;
character set shall be drawn as shown in table 40. An initial step can be represented textually with the
INITIAL_STEP...END_STEP construction shown in table 40.



For system initialization as defined in 2.4.2, the default initial elapsed time for steps is t#0s, and the
default initial state is Boolean 0 for ordinary steps and Boolean 1 for initial steps. However, when an
instance of a function block or a program is declared to be retentive (for instance, as in feature 3 of
table 33), the states and (if supported) elapsed times of all steps contained in the program or function

78 -

block shall be treated as retentive for system initialization as defined in 2.4.2.

Table 40 - Step features
No. REPRESENTATION DESCRIPTION
1 ]
pem——— + Step - Graphicai form
joEEw | with directed links
e + e o gtep name
|
I initial step - Graphical form with directed links
| pmmmmmmet " = Narme of initial step
E i o : : NOTE - The upper directed link
is not required it the initial
tEmmmmm=t
| step has no predecessors.
2 STEP *=*=* Step - Textual form
{* Step body *) without directed links (see 2.6.3)
END_STEP " = Step name
INITIARL STEP *** : Initial step - Textual form
{* Step bedy *) without directed links (see 2.6.3)
END_STEP " = Name of initial step
Step flag - General form
3a LA ¢ "+ = Step name
*** X = Boolean 1 when ™" is active, Boolean §
otherwise
| .
Fom——— + Step flag - Direct connection
3b | *A% |mome of Boolean variable ***.X to
Fomm—— + right side of step "™
|
Step elapsed time - General form
4 *xx T "= = Step name
**.T = A variable of type TIME (See 2.6.2)
NOTE - When feature 3a, 3b, or 4 is supporied, it shall be an error if the user program attempts to
modify the associated variable. For example, if S4 is a step name, then the following
statements would be errors in the ST language defined in 3.3:
. S4X:=1; ("ERROR®)
S4.T:=t#100ms ; (" ERROR *)

IEC DIS 1131-3




IEC DIS 1131-3 -79 -

2.6.3 Transitions

A transition represents the condition whereby control passes from one or more steps preceding the
transition to one or more successor steps along the comesponding directed link. The transition shall
be represented by a horizontal line across the vertical directed link.

The direction of evolution following the directed links shali be from the bottom of the predecessor
step(s) to_the top of the successor step(s}).

Each iransition shall have an associated fransition condition which is the result of the evaluation of a
single Boolean expression. A fransition condition which is always true shall be represented by the
symbol “1" or the keyword TRUE.

A transition condition can be asscciated with a transition by one of the following means, as shown in
table 41: -
1) By placing the appropriate Boolean expression in the ST language defined in 3.3 to the right of
the vertical directed link.
2) By a ladder diagram network in the LD ianguage defined in 4.2, whose output intersects the
vertical direcied link instead of a right rail.

3) By a network in the FBD language defined in 4.3, whose output intersects the vertical directed
link.

4) By a LD or FBD network whose output intersects the vertical directed link via a connector as
defined in 4.1.1.

5) By a TRANSITION...END_TRANSITION construct using the ST language. This shall consist of:

- The keywords TRANSITION FROM followed by the step name of the predecessor step (or, if
there is more than one predecessor, by a parenthesized list of predecessor steps);

- The keyword TO followed by the step name of the successor step (or, if there is more than one
successor, by a parenthesized fist of successor steps);

- The assighment operator (:=), followed by a Boolean expression in the ST language, specifying
the transition condition;

- The terminating keyword END_TRANSITICN.

€) By a TRANSITION...END_TRANSITION construct using the IL language defined in 3.2. This

shall consist of:

- The keywords TRANSITION FROM followed by the step name of the predecessor step (o, if
there is more than one predecessor, by a parenthesized list of predecessor steps);

- The keyword TO followed by the step name of the successor step (or, if there is more than one
successor, by a parenthesized list of successor steps);

- Beginning on a separate fine, a [ist of instructions in the IL language, the result of whose
evaluation determines the transition condition;

- The terminating keyword END_TRANSITION on a separate fine.

7) By the use of a transition name in the form of an identifier to the right of the directed link. This
identifier shall refer to a TRANSITION...END_TRANSITION construction defining one of the
following entities, whose evaluation shall result in the assignment of a Boolean value to the
variable denoted by the transition name:

- A network in the LD or FBD language:
- A list of instructions in the IL language:
- An assigt.nent of a Boolean expression it the ST language.



-80 - IEC DIS 11313

The scope of a transition name shall be /ocal to the program organization unit in which the transition is
located.

It shall be an error in the sense of 1.5.1 if any "side effect” {for instance, the assignment of a value to
a variable other than the transition name) occurs during the evaluation of a transition condition.

Table 41 - Transitions and transition conditions

Mo, EXAMPLE PESCRIPTION
]
e +
[ STEP7 | Predecessor step
o m +
! : Transition condition
1 + $IX2.4 & %1X2.3 using ST ianguage
i {subclause 3.3)
Fm——— +
| STEPE | Successor step
o +
!
I
b +
[STERT| Predecessor step
e +
| 3IX2.4 %IX2.3 ! Transition condition
2 domm | | | |======-= + using LD language
! § (subclause 4.2)
o —— +
|STEPS| Successor step
tm——— +
|
[
o +
ISTERT | Predecessor step
R T + dmme—- +
| & | J Transition condition
3 | 3IX2.4---]IN1 OUT|~=m=- + using FBD language
$IX2.3--~]IN2 | ! (subclause 4.3)
Fomm——— + tmm——— +
| STEP8 | Successor step
Y +
I

{continued on following page)



IEC DIS 1131-3

Table 41 - Transitions and transition conditions (continued)

No. Example Description
[ Use of connector:
Lttt +
ISTEP7 | Predecessar step
s +
{ .
4 STRANKD me— s om o cmom e + Transition connector
!
o ——— +
{STEPE | Successor step
e +
I
| %8IX2.4 %IX2.3 Transition condition:
da | | m—— | | ===~=>TRANX> Using LD language
| (subclause 4.2)
o ———— +
- b
4h $IX2.4==~1IN1 OUTi-~->TRANX> Using FBD language
$IX2.3---1IN2 | (subclause 4.3)
tmm——w—— +
STEP STEPR7: END_STEP )
5 | TRANSITION FROM STEP7 TO STEPS Textual equivalent
= $IX2.4 & %IX2.3 ; _of feature 1
END TRANSITION using ST language
STEP STEPS: END_STEP (subclause 3.3)
STEP STEP7: END_STEP .
§ | TRANSITION FROM STEP7 TO STEPS Textual equivalent

LD %IX2.4

AND %IX2.3
END_TRANSITION
STEP STEPS: END_STEP

of feature 1
using IL language
{subclause 3.2)

- . {continued on following page)



-82-

IECDIS 11313

Table 41 - Transitions and transition conditions (continued)

No. ' Example Description
[ Use of transition name:
Y R +
| STEP7 { Predecessor step
e +
{
7 + TRANTS Transition name
i
fm——— + .
| STEPB | Successor step
o e +

TRANSITION TRANTS:

| %IX2.4 %IX2.3 TRANTS

78 | Amem)|mmem | fmmmeee () ---t

END TRANSITION

i
!

Transition condition
using LD fanguage
{subclause 4.2)

TRANSITION TRAN7S:

$IX2.4---|IN1 QUT|-~-TRANT8
$IXZ .3~~~ |INZ !

END_TRANSITION

Transition condition
using FBD language
{subclause 4.3)

7C | TRANSITION TRANTS:
LD §¥IX2.4
AND $%IX2.3

END_TRANSITION

Transition condition
using IL language
{subclause 3.2)

7d | TRANSITION TRAN78
1= $IXZ2.4 & %IX2.3 ;
END TRANSITIGCN

Transition condition
using ST language
{subclause 3.3)

NOTE 1 - if feature 1 of table 40 is supported, then one or more of features 1, 2, 3, 4, or 7 of this

table shall be supported.

NOTE 2 - If feature 2 of table 40 is supported, then feature 5 or 6 of this table, or both, shall be

supported.




IEC DIS 1131-3 .83

2.6.4 Actions

Zero or more actions shall be associated with each step. A step which has zero associated actions
shall be considered as having a WAIT function, that is, waiting for a successor transition condition to
become true.

An action can be a Boolean variable, a collection of instructions in the iL language defined in 3.2, a
coliection of statements in the ST language defined in 3.3, a collection of rungs in the LD language
defined in 4.2, a collection of networks in the FBD language defined in 4.3, or & sequential function
chart (SFC) organized as defined in this subclause (2.6).

Actions shall be declared via one or more of the mechanisms defined in 2.6.4.1, and shall be
associated with steps via textual step bodies or graphicai action blocks, as defined in 2.6.4.2. The
details of action block representation are defined in 2.6.4.3. Control of actions shall be expressed by
action qualifiers as defined in 2.6.4.4.

2.6.4.1 Deciaration
A programmable controlier implementation which supports SFC elements shall provide one or more of

the mechanisms defined in table 42 for the declaration of actions. The scope of the declaration of an
action shall be localto the program organization unit containing the dectaration.



«84 -

Table 42 - Declaration of actions

EC DIS 11313

No. Feature
1 Any Boolean variable declared in a VAR or VAR_QUTPUT block, or their graphical
equivalents, can be an action.
No. Example Feature
o o e 2 e A B e 2 0 £ +
| ACTION 4 |
e e s e e S +
2 i |O%IX1  ¥MX3  S8.X  $QX17 | i Graphical
! tomen ] fom—— [jome=}|mm—— {j ===t i declaration
; ; ; ! intD
s e + s X language
; 4====|EN ENO| §MX10 i (subclause 4.2)
{ | Cowi LT |====—m—mee {§) ===+ ;
i | D==i ! { i
i ! S + a i
e +
o e +
| OPEN_VALVE_1 l
e e n +
I ! |
| +====m==sscc=mm===+ |
2s | || VALVE_1 READY || | Inclusion of
| 4=====s======s====+ | SFC elements
E | ! in action
i + STEP8.X ;
| ' i
[ o o o e v o + e + |
{ | VALVE_1_OPENING |=--| N |VALVE_l_FWD| |
| tomrmm———————————— I T it + |
I I !
et T e L +
o +
ool ACTION 4 |
e o e e e e e +
| fmmmt E
} $IX1--1 & | | Graphical
2f ! EMX3 - | | ~—%QX17 ! declaration
| $8.X=mmmmme—- P | in FBD
| et FF28 | language
[ s 1 ! (subclause 4.3)
J | SR | I
] tm———— + | Ql|-%MX10 i
| C--1 LT |=--iSl1 | !
! D--| oA
| +m-m--- + 1
o e mE T E T E T T ———— +

{continued on following page)



IEC DIS 1131-3

.85 -

Table 42 - Declaration of actions (continued)

No. Example Feature
3s | ACTION ACTION_4: Textual
$QX17 = %IX1 & %MX3 & S8.X ; declaration
FF28(S1 := {C<D}}; inST
§MX10 := FF2B8.Q; fanguage
END_ACTION {subclause 3.3}
3i | ACTION ACTION 4:
1D $8.¥%
AND FIX1 Textual
AND EMX3 declaration
ST 5QX17 in k.
LD C lanhguage
LT D {subclause 3.2}
S1 FFZ8
LD FF28.Q
ST $MN10
END_ACTION

NOTE 1 - The step flag S8.X is used in these examples to obtain the desired result that, when S8

is deactivated, %QX17 := 0 and %MX10 retains its previous state.

NOTE 2 - If teature 1 of table 40 is supported, then one or more of the features in this table, or
feature 4 of table 43, shall be supported.
NOTE 3 - if feature 2 of table 40 is supported, then one or more of features 1,3s, or 3i of this table
shall be supported.




- B6 - ‘ IEC DIS 11313

2.6.4.2 Association with steps

A programmable controlier implementation which supports SFC elements shall provide one or more of
the mechanisms defined in table 43 for the association of actions with steps.

Table 43 - Step/action association

No. Example Feature
|
dommmmt oo o e o 2
1 | S8 |-~1 L | ACTION_1 {DNI| Action block
pm——-t (L #10s] ! f {see 2.6.4.3}
i to———— o o oo e
+ DN1
I
c
fmm b h———— - e e e e o m

2 [ S8 {-~| L i ACTION_ 1 {DN1 |
$ommmet | C#10S1 P Concatenated

) | +m—mmm bmmmm————— e SR action blocks

+DN1 | P ACTION_ 2 ! |

] Fmm—— e o e Fowmdt

| N ACTION_3 ! |

i o o e +———+
STEP S58:

3 ACTION_1(L,t#10s,DN1) ; Textual
ACTION_2(P) ¢ step body
ACTION_3(N) ;

END STEP
tm— ottt ——— ————————— ot

——==| N | ACTION 4 { b=
- o +———

4 | | %0X17 := %IX1 & IMX3 | ] Action block

| [ & SB8.X ; | ! d” Field
| | FF28 (S1 := (C<D)); | i {see 2.6.4.3)
| | %MX10 := FF28.Q; | {
Fom et s tm———

NOTE - When feature 4 is used, the corresponding action name cannot be used in any other action
block.




IEC DIS 1131-3 -87-

2.6.4.3 Action blocks

As shown in table 44, an action block is a graphical element for processing a Boolean input variable to
produce an enabling condition for an associated action, specified as defined in 264.1,

The action block provides a means of optionally specifying Boolean “feedback” variables, indicated by
the “c* field in table 44, which can be set by the specified action to indicate its completion, timeout,
error conditions, etc. 1f the *c" field is not present, and the “b* fieki specifies that the action shall be a
Boolean variable, then this variable shall be interpreted as the "c" variable when required.

When action blocks are concatenated graphically as illustrated in table 43, such concatenations can
have multipie feedback variables, but shall have only a single common Boolean input variable, which
shall act simultaneously upon all the concatenated biocks.

As well as being associated with a step, an action block can be used as a graphicai element in the LD

or FBD languages specified in clause 4. in this case, signal or power flow through an action block
shall follow the rules specified in 4.1.1.

Table 44 - Action block features

No. Feature Graphical form
1 | "a": Qualifier as per 2.6.4.4
2 | "b": Acticnh name Fomm— Frmmmmm e Fo——- +
3 | "c*: Boolean “feedback” variables =--1 "a" | b | "™ ===
d" : Action using: Fomm +"“":;; “““““ Fomm *
4 IL language (3.2) * f
5 5T language (3.3) i __________________________ i
6 LD language (4.2)
7 FBD language (4.3)
No. Feature/Example

8 Use of action blocks in ladder diagrams {subclause 4.2):

| S$8.% 8$IX7.5 H=m—d=--——- +--—+ QK1 |

#==| |====| |==-={ N | ACT1 |DNL|--( )-—+

[ dmm tm———t !
g Use of action blocks in function block diagrams (subclause 4.3):

f———t e o im +
S8.X=-==| & |[====v i N 1§ ACT1 | DN1 |---OKl
$IX7.5--~| i et e +
s
NOTE 1 - Field "a" can be omitted when the qualifier is "N".
NOTE 2 - Field "¢c" can be omitted when no feedback variable is used.




-88 - - {ECDIS 11312

2.6.4.4 Action qualifiers

Associated with each step/action association defined in 2.6.4.2, or each occurrence of an action block
as defined in 2.6.4.3, shall be an action qualifier. The value of this qualifier shall be one of the values
listed in table 45. In addition, the qualifiers L, D, SD, DS, and SL shall have an associated duration of
type TIME.

NOTE - IEC 848 gives informal definitions and examples of the use of these qualifiers.
This standard formalizes these definitions, redefining the "S” qualifier and introducing the
“R" quaiifier. The control of actions using these qualifiers is defined in the following
subclause, and additional examples of their use are given in annex F.

Table 45 - Action qualifiers

No. Qualifier Expianation
1 None Non-stored (null qualifier}
2 N Non-stored
3 R overriding Reset
4 S Set (Stored)
5 L time Limited
6 D time Delayed
7 P Pulse
8 SD Stored and time Delayed
g DS Delayed and Stored
10 St Stored and time Limited

2.6.4.5 Action control
The control of actions shall be functionally equivalent to the appiication of the following rules:

1) Associated with each action shall be the functional equivalent of an instance of the
ACTION_CONTROL function block defined in figures 14 and 15. |f the action is declared as a
Boolean variable, as defined in 2.6.4.1, the "Q" output of this biock shall be the state of this
Boolean variable. |f the action is declared as a collection of statements or networks, as defined
in 2.6.4.1, then this collection shall be executed continually while the "Q" output of the
ACTION_CONTROL function block stands at Boolean 1. The statements or networks shall be
executed one final time after the falling edge of "Q".

2) A Boolean input to the ACTION_CONTROL block for an action shall be said to have an
association with a step as defined in 2.6.4.2, or with an action block as defined in 2.6.4.3, if the
corresponding gualifier is equivalent to the input name (N, R, S, L, D, P, SD, DS, or SL). The
association shall be said to be active if the associated step is active, or if the associaled action
biock's input has the value Boolean 1. The active associations of an action are equivalent to the
set of active associations of all inputs to its ACTION_CONTROL function block. :

A Boolean input to an ACTION_CONTRCL block shall have the value Boolean 1 if it has at least
one active association, and the value Boolean 0 otherwise.



IECDIS 1131-3 « 89 -

3) The value of the T input to an ACTION_CONTROL biock shall be the value of the duration portion
of a time-related qualifier (L, D, SD, DS, or SL) of an active association. if no such association
exists, the value of the T input shall be #0s.

4) it shall be an errorin the sense of subclause 1.5.1 if one or more of the following conditions exist:
a) More than one active association of an action has a time-related qualifier (L, D, SO, DS, or SL}.

b} The SD input to an ACTION_CONTROL block has the Boolean value 1 when the Q1 ouiput of
its SL_FF block has the Boolean value 1.

¢} The SL input to an ACTION_CONTROL block has the Boolean vaite 1 when the Q1 output of
#s SD_FF block has the Boolean value 1.

5) it is not required that the ACTION_CONTROL block itself be implemented, but only that the control
of actions be equivalent to the preceding rules. Only those portions of the action control
appropriate to a particular action need be instantiated, as ilustrated in figure 16. in pariicular,
note that simple MOVE {:=) and Boolean OR functions suffice for control of Boolean varabie
actions if the latter's associations have only "N” qualifiers.

- ——— +

| ACTION CONTROL |
BOOL~--iN Q]---300L
BOOL---|R |
BOOL---|§ |
BOOL-=~11L |
BOOL~--~|D |
BOQL---|P |
BOOL---|SD |
BOOL--~ (DS ;
BOOL-~~-|SL ; )
TIME---|T |

B +

Figure 14 - ACTION_CONTROL function block - External interface
{Not visibie to the user)



IEC DIS 11313

S

|===Q

it Lt S 4

Nmm | mm o e e e e e

S_FF

R-—+

RS |

§wr | mmmmmmmm e e {§ Q) s e e mm e

e

o e

et R el I

L=

= |

i
i

N

L
e

i
]
{

ot

| TON |

D THMR

$ommeme |IN Q) ==m+

b e | PT

Fmmm—

i

{ TON

FREIE

s m e | PT

I ]
I i
] ]
t i [<H
3 ) [y
i 1 |
+ i i (%)
§ § i fat
i i 1
! H i
] H + - — — 4
1 [ = A @] 1
+ 1= = 1
t Bt O ]
i [ S -4 |
0 i [
1 - — — 4
1 11
i 11
p—Le b
[N & I | __m
(G ) i 11 B
-oH i [ I
[ i 4 ] 11w
[ ST I 21 i 110
F| o [
[P T A I 11
1 |G [
R |+ —
| 1
1 t
1 1
I 4 — — e+
I fu ) — i
1 (R e ]
[ =S4 -t
1w [0 A
1 4 e e e
1 [
| [
[ [}
1 [
[ [
' ]
| [
o o

'

]

¢
+ - — — +
i - 1
1o 9
1 o (= ]
[ I ¥ B« A |
+ — — — 4

[ |

I

[

b+ —

F

3

]

'

]

i
+ — = — +
i o
[ k
I O i
=
| Ho b
+ —— — +

1 1

11

[
+ 1o
] It
§ [
t I ¥
£ 1t
' oy
§ | I
1 [
¥ 1t
] It
i Pt
i | I
! 1
+ ot

]

L

e e 7 7 7 e i e o

SL FF

ot

| RS

SL- ==

wmm-====|R1

o=

tomm——t P

ot

| TON | I

+o===|IN Ql---+

Temmmmtommmmr—m—mmmmme—e—e | PT

bom———t
Figure 15 - ACTION_CONTROL function block body

(not visible to the user)



IEC DIS 1131-3 -91-

I
o + dmmedemmmm——ee—ae ommm————————e +
| 822 |---{ N | HV_BREAKER | HV_BRKR_CLOSED |
tm———— + demmtmmmmememeee- o ———————— +
| i § i START INDICATOR }
| om0 e +
+ HV_BRKR_CLOSED
|
fm——— $ mmmedme—wemm——————— +
| 823 ===} SL | RUNUP_MONITOR |
o +  [t#im z
! et e o +
| | D | START WAIT i
i it#lsi !
} o g e e +
+ START WAIT
f
o + e e ————— e — e ————— - +
| 824 |==--{ N | ADVANCE_STARTER | STARTER_ADVANCED |
o + fmmm—— b o e o e o e e +
! | L | START_MONITOR i
| |t#30s] |
[ Fmm—— e +
+ STARTER_ADVANCED
l
+m———— + e e —— i ————————— e et b D +
| S26 |---| N | RETRACT_STARTER | STARTER_RETRACTED |
N + Fmm - Fomem s m———————— o e — e e +
| | R | START_MONITOR 1
i form———— i S +
+ STARTER_RETRACTED
!
o + o e e o e +
t §27 |=-=-~} R | START_INDICATOR |
o —— + Fm——— o ————— s e +
| { R | RUNUP_MONITOR |
| e —— e e e e +
NOTE - The complete SFC network and its associated declarations are not
shown in this example.

Figure 16a - Action control example - SFC representation



.92 IEC DIS 11313

S22 Fim e o o o HV_BREAKER
S24  Kemmmm e e e e e e e ADVANCE _STARTER
S26 . Nomm e o e e RETRACT_STARTER
START INDICATOR § FF
et 2
I RS |
G227, Ko or e e [§ Qifwm——memmmw—————— START INDICATOR
8§27 . fmmm e e e IRL I : e
Fm——et
STBRT_WAIT D_TMR
o +
[ TON |
8§23, K-——rmwmmm e e [IN Qf-————e—emmmmm——m o START WAIT
CElSmmm e [PT E
o +
RUNUP_MONITOR SL_FF
ok .
| RS | fm——
23, K-==18 Ql|==trm——m e s — e m—— e | & {=--RUNUP_MONITCR
§27.X---1R1 | | RUNUP_MONITOR_SL_TMR +--0|
T tm———— + | s
l | TON | [
tmmmmm |IN Qf---====== +
C#lM-——— e IPT ]
Fomm—— +
Fm———
§24 . K-———mmmm———m e | & {--—-START MONITOR
{ START MONITOR_L_TMR +---0| f
I Fomm— + i e
[ | TON | !
pom o ———— FIN  Q|===m——m +
L#30g-———mm e mmm— e 2T |
) +

Figure 16b - Action control example - functionai equivaient




IEC DIS 1131-3 =83 -

2.6.5 Rules of evolution

The initial situation of a SFC network is characterized by the initial step which is in the active state
upon initialization of the program or function block containing the network.

Evolutions of the active states of steps shall take place along the directed links when caused by the
clearing of one or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding transition symbol
by directed links, are active. The clearing of a transiion occurs when the transition is enabled and
when the associated transition condition is true.

The clearing of a transition causes the deactivation (or “resetting”) of all the immediately preceding
steps connected to the comesponding transition symbol by directed links, followed by the activation of
all the immediately following steps.

The atternation Step/Transition and Transition/Step shall always be maintained in SFC element
connections, that is:

- Two steps shall never be directly linked; they shall always be separated by a transition.
- Two transitions shall never be directly linked: they shali aiways be separated by a step.

When the clearing of a transition leads to the activation of several sleps at the same time, the
sequences 1o which these steps belong are called simultaneous sequences. After their simultaneous
activation, the evolution of each of these sequences becomes independent. In order to emphasize the
special nature of such transitions, the divergence and convergence of simuitaneous sequences shall
be indicated by a double horizontal line.

Table 46 defines the syntax and semantics of the allowed combinations of steps and transitions.

The clearing time of a transition may theoretically be considered as short as one may wish, but # can
never be zero. In practice, the clearing time will be imposed by the programmable controller
implementation. For the same reason, the duration of a step activity can never be considered 1o be
zero.

Several transitions which can be cleared simultaneously shall be cleared simultaneously, within the
timing constraints of the particular programmable controlier implementation and the priority constraints
defined in table 46.

Testing of the successor transition condition(s) of an active step shall not be performed until the
effects of the step activation have propagated throughout the program organization unit in which the
step is declared.

Figure 17 illustrates the application of these rules. In this figure, the active state of a step is indicated
by the presence of an asterisk (°) in the comesponding block. This notation is used for illustration
only, and is not a required language feature. '

The application of the rules given in this subclause cannot prevent the formulation of "unsafe” SFCs,
such as the one shown in figure 18a, which may exhibit uncontrolied proliferation of tokens. Likewise,
the appiication of these rules cannot prevent the formulation of "unreachable” SFCs, such as the one
shown in figure 18b, which may exhibit “locked up” behavior. The programmable controller system
shall treat the existence of such conditions as errors as defined in 1.5.1.



IEC DIS 11313

Table 46 - Sequence evolution

No.

Example

Rule

e
I 83

Single sequence:
The alternation step-
fransition is repeated in series.

Example:

An evolution from step S3 io step
S4 shali take place if and only if
step S3 is in the active state and the
transition condition ¢ is true.

Divergence of sequence selection:
A selection between several sequences
is represented by as many transition
symbols, under the horizontal line, as
there are different possible
evolutions. The asterisk denotes
left-to-right priority of transition
evaluations.

Exampie: An evoiution shall take place
from S5 to S6 only if S5 is active and
the transition condition "e” is true,
or from S5 to 88 only if S5 is active
and " is true and "e" is false.

| $6
o

| S8

[

R

fmmmmt

Divergence of sequence selection:
The asterisk, followed by numbered
branches, indicates a user-defined priority
of transition evaluation, with the lowest-
numbered branch having the highest
priority.

Example:

An evolution shall take place from S5 to
S8 only if S5 is active and the transition
condition *f* is true, or from S5 to S6
only if S5 is active, and "e" is true,
and "t" is faise.

(continued on following page)




IEC DIS 1131-3

-95 .

Table 46 - Sequence evolution (continued)

No.

Example

Rule

2c

|

ot

| 85 |

s

o e oo,

t
+e
|

o
i 56 |
ot

i
+NOT e & £

!
tm—mt
| 88 |
s

!

Divergence of sequence selection:
The connection of the branch indicates that
the user must assure that transition
conditions are mutually exciusive, as
specified by IEC 848.

Example: :
86 only if S5 is active and the transition
condition "e” is true, or from S5 to S8
only if S5 is active and "e" is false
and °f is true.

2¢

tm———t
i 85 |
o m———t
i
et
{
+NQT e & £
|
T
i 88 )
tm———

Divergence of sequence selection:
The connection of the branch indicates that
the user must assure that transition
conditions are mutually exclusive, as
specified by IEC 848.

Example:

S6 only if S5 is active and the transition
condition "e" is true, or from S5 to S8
only it S5 is active and "e” is talse
and ™" is true.

Convergence of sequence selection:
The end of a sequence selection is
represented by as many transition

symbols, above the horizontal fine, as

there are selection paths to be ended.

Exampile:
An evolution shall take place
from S7 1o S10 only if S7 is active
and the transition condition "h" is true,
or from S8 1o S10 only if S9 is active
andt *|" is true, '

(continued on following page)




-9 - IECDIS 11318

Table 46 - Sequence evolution (continued)

No. Example Rule
4 i Simultaneous sequences - divergence:
ot Only one common transition symboi shall
IS1l | be possible, immediately above the double
it horizontal line of synchronization.
L b Exampie:
An evolution shall take place from 811

=m+s==unxixz‘x::w+=as to 81 2' 3141"' Gﬂiy %f 811 iS aCﬁVG
| | ter and the transition condition “b*
associated to the common transition is
o o e o EU———— ; e
| s12] | s14i true. After the simultaneous activation
of $12, S14, eifc., the evolution of each

+";-* +"i"+ sequence proceeds independently.

| | Simultaneous sequences - convergence:
s Femm— Only one common transition symbol shall
[ S13| { 815 be possible, immediately under the double
g ———t ot horizontal line of synchronization.

“i“:“h““i“ Exampie:
T An evolution shall take place from §13,
i q $185,... to S16 only if all steps above
| and connected 1o the double horizomntal
line are active and the transition
condition "d" associated to the commaon
transition is true.

{continued on following page)



IEC DIS 1131-3

-97 -

Table 46 - Sequence evolution (continued)

No. Example Rule
Sa | Sequence skip:
e o + A "sequence skip® is a special case of
8¢ | $30 | sequence selection {Feature 2} in which one
o + or more of the branches contain no steps.
i Features 5a, 5b, and 5¢ correspond to the
hm et representation options given in features 2a,
% i 2b, and 2¢, respectively.
te *a Example:
+__‘_i___+ i (Feature 5a shown)
L s31 1 E An evolution shall take place from S30 to
e . , 533 if "a" is false and "d" is true, that
| | is, the sequence {831, $32) will be skipped.
+ b 1
i !
.= + |
i 832 | '
o - + |
! !
+ C i
I !
tmm -
J
fmm—— +
| S33 |
Fumm—— +
I

(continued on following page)




-G8 -

Table 46 - Sequence evolution (continued)

i2C DIS 1131-3

No. Example Rule
6a | Sequence loop:
&b + A “sequence loop” is a special case of
8¢ | 830 | sequence selection (Feature 2) in which one
e + or more of the branches retums o a
| preceding siep. Features 6a, &b, and 6¢
+ a cormespond to the representation options
| given in features 2a, 2b, and Zc,
tmmmmm e - respectively. =
+---.-...§........_.§. i Exmple:
| §31 | : _ {Feature 6a shown)
e N | An evolution shall take place from S32 to
S31 i "¢"is {alse and "d” is frue,
E l that is, the sequence (S31, 832) wili be
+ b |
| : repeated.
T + !
! 832 |
- to——— + |
i !
W o o ——— + !
! i |
+ C + d |
| | l
tm———— + -
{ 8§33 |
Fm———— +

{continued on following page)



IEC DIS 1131-3 .99 -

Table 46 - Sequence evolution (continued)

No. Exampie Rule

7 ! Directional arrows:
o + When necessary for clarity, the “less than®
| 530 i {<) character of the ISO 646 character set
o + can be used to indicate right-to-left

t control flow, and the “greater than” (>}

+ a character io represent left-to-right

{ control flow. When this feature is used,
dmm e the corresponding character shail be located
between two =" characters, that is, in the
character sequence "-<-" or “->-" as shown

in the accompanying example.




- 100 - IEC DIS 1131-3
| 1 | |
frmmm——— + FRR——— $+  pmm———— $  bemm——— +
a) |STEP10 | ISTEPS| {STEP13| [STEP22]
E | l N
TR — + e PR T——— R —— +
i i s |
+ X T——————————r R
| !
fommmem + ;%
}STEPL1L H
i { e
pm———— + ! f
| fmmmmm e +
|STEP15| |STEPL6
| Lo |
Fom——— b +
| !
; | | |
Fuere— + fm———— T ¥ Hmmemem +
b) |STEPLO | |STEP9| |STEP13| {STEP22]
BRI T T T B S
I + FU . 4 e $ tmmm——— +
| | | |
+ X B
| |
pommme o + + X
|STEP11] i
| | N ST ——
tmmmmme + | |
f Fmmm—— O — +
|STEP1S| |STEP16]
| I |
fommm——— +  Amm———- +
| |

NOTE - In this figure, the active state of a step is indicated by the presence of an
asterisk {*) in the corresponding block. This notation is used for illustration

only, and is not a required language feature.

Figure 17 - SFC evolution rules
a) Transition not enabled (X = Don't care)
bj Transition enabied but not cleared (X=0)
{continued on following page)



IEC DIS 1133-3 =101 -

[ i I !
o + $mm——— A + o n——— +
| STEP10/] |STEP9| |STEP13| |STEP22]
! ! | bt ! f I
Formanmm + et +  A—mwm—— + Fm—m—— +

l { i !

+ X Y + ¢

! i
o e = + + X
|STEP1L i
b= | + +
$mmmm e + ! s

t e o +  Femme—— +

|STEP1S] {STEPLl&]

| A R L

Fomm——— I +
i J

NOTE - In this figure, the active state of a step is indicated by the presence of an
asterisk (7) in the comesponding biock. This notation is used for illustration
only, and is not a required language feature.

Figure 17 - Evolution rules (continued)
(¢) Transition Cleared (X=1}



IEC DIS 1131-3

=102 -
e o e e e e +
| |
I o
| It a
| 1
[ |
i + tl
[ |
] = T T T . e 2 20 T, T T O 0 W S T T~ 08 202 2
i i !
| fm——— e —— +
E B c |
; oo e +  fmeee- +
! i J
| ! R +
] i i !
! ! + 2 + L3
! i | i
i i ———t G-t
i | D b E
| | e et
| | { !
| 2 2t e e 21 20 2 2 R TR e T 2 ST S O I T B W 4 M I T |
! ) I
| + t4 + ts
| { [
| + e Fom———t
I | F | G
| ot o
! | {
| + té + €7
| | I
o e o — Fm et e e e w +

Figure 18 - SFC errors

a) an "unsafe” SFC (see 2.6.5)



IEC DIS 1131-3

=103 -

______________________ +
[
- g g
11 A}
e st 30 o O
!
+ tl
i
2t o g e v E +
! I
Fom + o +
B I C !
tm + Fr—nm— +
! !
| L +
{ { i
i + 2 + €3
! ! |
| mm—t et
i | D} | E |
| ot ot
| ! I
:===+==s======m==+=ﬁ#g=====&g=—+-m= 1
[ i
+ t4 + t5
! |
et ot
| F i 1 G |
ot =t

:u:::u-@-:::z:ﬂ':-:-t-{-wn---n-w--n}-u::

Figure 18 - SFC errors
b) An “unreachable” SFC (see 2.6.5)




104 - [EC DIS 1131-3

2.6.6 Compatibility of SFC elements

SFCs can be represented graphically or textually, utilizing the elements defined above. Table 47
summarizes for convenience those elements which are mutually compatible for graphical and textual
representation, respectively.

Table 47 - Compatible SFC features

Table Graphical representiation Texiual representation
40 1,33, 3b, 4 2, 3a. 4
41 1,2,3,4,4a,4b,7,7a,70 8, 8, 7¢, 7d
42 1,2, 2s, 2t 3s,31
43 1.2,4 3
44 1-9 -
45 i-10 i - 10 {textual equivalent)
48 107 108
57 All -

2.6.7 Compliance reguirements

In order to claim compliance with the requirements of 2.8, the elements shown in table 48 shall be

supported and the compatibility requirements defined in 2.6.6 shall be observed.

Table 48 - SFC minimal compliance requirements

Table Graphical representation Textual representation
40 1 2
41 tor2or3or(4and(4aor4b)) 50r6
or{7 and (7aor7bor 7c or 7d}) B
42 1or2lordf 3sor3i
43 lor2ord 3
45 1or2 lor2
48 1and (2aor2bor 2c) and 3 and 4 Same (textual equivalent)
47 (1 or 2) and (3 or 4) and (5 or &) and Not required
(7 or8) and (S or 10) and (11 or 12}










IEC DIS 1131-3 ‘ - 105 -

2.7 Configuration eiements

As described in 1.4.1, a configuration consists of resources, tasks (which are defined within
resources), global variables, and access paths. Each of these elements is defined in detail in this
subclause.

A graphic exampie of a simple configuration is shown in figure 19b. Skeleton declarations for the
corresponding function blocks and programs are given in figure 19a. This figure serves as a reference
point for the examples of configuration elements given in the remainder of this subclause.

FUNCTION_BLOCK A FUNCTION_BLOCK B

YAR_OQUTPUT y1 : UINT ; VAR_INPUT b1 : UINT ;

y2 :BYTE; he : BYTE ;

END_VAR END_VAR
END_FUNCTION_BLOCK END_FUNCTION_BLOCK
FUNCTION_BLOCK C FUNCTION_BLOCK D

VAR_OUTPUT ¢t : BOOL . VAR_INPUT d1: BOOL ; END_VAR

END_VAR VAR_QUTPUT y2 : INT ; END_VAR
END_FUNCTION_BLOCK END_FUNCTION_BLOCK

PROGRAM F

VAR_INPUT x1:BOOL : x2: UINT ; END_VAR
VAR _QUTPUT yt : BYTE ; END_VAR
END_PROGRAM

PROGRAM G
VAR_OUTPUT outt : UINT ; END_VAR
VAR_EXTERNAL z1 : BYTE ; END_VAR
VAR FB1:A; FB2:B,; END_VAR
FB1({...); out1 := FB1.y1; z1:= FB1.y2;
FB2(bt := FB1.yt, b2 := FB1.y2}:
END_PROGRAM

PROGRAMH
VAR_OUTPUT HOUT1:INT ; END_VAR
VAR FB1:C,; FB2:D . END_VAR
FB1(...};
FB2(d1 = FB1.c1); HOUT1 :=FB2yZ
END_PROGRAM

Figure 19a - Skeleton function block and program declarations for configuratidn example



- 106 - IEC DIS 11313

CONFIGURATION CELL 1
RESOURCE STATION_2

RESOURCE STATION_1
TASK TASK TASK TASK
SLOW _1 FAST 1 PER_2 INT 2
P B2 Pt Pd
PROGRAM F PROGRAM G . PROGRAM F PROGRAM M
it yi B Mxt
- - c s}
x2 allis x2 v ety
yil ™ ibi y2
v T2 =
il R HOUT 1]
SLOW 1 PER_2 INT_2
%iX1.1 2t w 2 SLOWS
GLOBAL AND OIRECTLY REPRES ED VARIABLES
BAKER ABLE CHARLIE DOG  GAMMA ALPHA BETA
ACCESS PATHS
{See IEC 1131-5)

Communication function

Figure 19b - Graphical example of a configuration



IEC DIS 1131-3 - 107 -

2.7.1 Configurations, resources, and access paths

Table 48 enumerates the language features for declaration of configurations, resources, global
variables, and access paths. Partial enumeration of TASK declaration features is also given;
additional information on tasks is provided in 2.7.2. The formal syntax for these features is given in
B.1.7. Figure 20 provides examples of these features, corresponding to the example configuration
shown in figure 19b and the supporting deciaraticns in figure 19a.

The ON qualifier in the RESOURCE...ON..END_RESQURCE construction is used o specify the type
of "processing function” and #s "man-machine interface” and “senser and actuator imerface” functions
upon which the resource and iis associated programs and fasks are io be implemented. The
manufacturer shall supply a resource library of such functions, as illustrated in figure 3. Associated
with each element in this library shall be an identifier (the resource fype name) for use in resource
declaration.

The scope of a VAR_GLOBAL declaration shall be limited to the configuration or resource in which it
is declared, with the exception that an access path can be declared {o a global variable in a resource
using {eature 10d in table 49.

The VAR_ACCESS...END_VAR construction provides a means of specifying named variables which
can be accessed by some of the communication services specified in IEC 1131-5. An agccess path
associates each such variable with an input or output variable of a program, a global variable, or a
directly represented variable as defined in 2.4.1.1. 1f such a variable is a muiti-element varable
{structure or array), an access path can be specified to an element of the variable. The direction of
the access path can be specified as READ_WRITE or READ_ONLY, indicating that the
communication services can both read and modify the value of the variable in the first case, or read
but not modify the value in the second case. If no direction is specified, the default direction is
READ_ONLY.



108 - IEC DIS 1131-3

Table 49 - Configuration and resource declaration features

No. DESCRIPTION

1 CONFIGURATION...END_CONFIGURATION construction
2 VAR_GLOBAL...END_VAR construction within CONFIGURATION
3 RESCURCE...ON..END_RESOURCE construction
4 VAR_GLOBAL..END_VAR construction within RESOURCE
Sa Periodic TASK construction within RESOURCE (Note 1)
5b Non-periodic TASK construction within RESCOURCE (Note 1)

Ba PROGRAM declaration with PROGRAM-10-TASK association (Note 1)
6b | PROGRAM declaration with Function Block-to-TASK association (Note 1)

6¢C PROGRAM declaration with no TASK association {Note 1}

7 Declaration of directly represented variables in VAR_GLOBAL (Note 2)
8a Connection of directly represented variables to PROGRAM inputs
8b Connection of GLOBAL variables to PROGRAM inputs
9a Connection of PROGRAM outputs to directly represented variables
b Connection of PROGRAM outputs to GLOBAL variables
10a VAR_ACCESS...END_VAR construction
10b Access paths to directly represented variables
10c Access paths to PROGRAM inputs
10d Access paths to GLOBAL variables in RESOURCES
10e Access paths to GLOBAL variables in CONFIGURATIONS -
10t Access paths to PROGRAM outputs

NOTE 1 - See 2.7.2 for further description of TASK features.
NOTE 2 - See 2.4.3.1 for further description of related features.




IEC DIS 1131-3 - 108 -

No. EXAMPLE

1 CONFIGURATION CELL_1

2 VAR GLOBAL w: UINT; END_VAR

3 RESOURCE STATION_1 ON PROCESSOR_TYPE 1

4 VAR _GLOBAL zl: BYTE; END_VAR

53 TASK SLOW_1(INTERVAL := t§20ms, PRICRITY := 2} :
Sa TASK FAST 1 (INTERVAL := t#10ms, PRIORITY :=.1) :
¢a PROGRAM P1 WITH SLOW_1 '

8a FP{xl = %IX1.3%} :

Sb PROGREM P2 : G(OUTL => w,

139) FBl WITH SLOW_1,

&b FB2 WITH FAST 1)

3 END RESOURCE

3 RESOURCE STATION 2 ON PROCESSOR_TYPE_2

4 VAR_GLOBAL z2 : BOOL ;

7 AT %QW5S : INT

4 END_VAR

Sa TASK PER_2 (INTERVAL := t#50ms, PRIORITY := 2} ;
Sb TASK INT_2 (SINGLE := z2, PRIORITY := 1) ;
6a PROGRAM P1 WITH PER 2

8h F{xl := z2, %2 :=w} 3

6a PROGRAM P4 WITH INT 2

%a H(HOUT1 => %QW5,

Eb FBR1 WITE PER 2);

3 END_RESOURCE
10z VAR_ACCESS
10b ABLE : STATION 1.%IX1.1 : BOOL READ ONLY ;
10c BAKER  : STATION_1.P1l.x2 : UINT READ WRITE ;
10d CHARLIE : STATION 1.zl : BYTE ;
10e DOG Y : UINT READ ONLY ;
10f ALPEA  : STATION_2.Pl.yl : BYTE READ ONLY
10f BETA : STATION 2.P4.HOUT1 : INT READ_ONLY ;
10d GAMMA  : STATION_ 2.z2 : BOOL READ WRITE ;
10a END_VAR

1 END_CONFIGURATION

NOTE 1 - Graphical and semigraphic representation of these features is allowed but is beyond the

scope of this Part of IEC 1131.

NOTE 2 - It is an error if the data type declared for a variable in a VAR_ACCESS statement is not the

same as the data type declared for the variable elsewhere, e.g., it variable BAKER is
declared of type WORD in the above examples.

Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features



- 110 » IEC DIS 11313

2.7.2 Tasks

For the purposes of IEC 1131-3, a task is defined as an execution control element which is capable of
invoking, either on a periodic basis or upon the occurrence of the rising edge of a specified Boolean
variable, the execution of a set of program organization units, which can include programs and
function blocks whase instances are specified in the declaration of programs.

Tasks and their association with program organization units can be represented graphically or
textually, as shown in table 50, as part of resources within configurations. A task is implicitty enabled
or disabled by its associated resource according to the mechanisms defined in 1.4.1. The control of
program organization units by enabled tasks shall conform to the foliowing rules: R

1) The associated program organization units shall be scheduied for execution upon each rising edge
of the SINGLE input of the task.

2 If the INTERVAL input is non-zero, the associated program crganization units shall be scheduled
for execution periodically at the specified interval as long as the SINGLE input stands at zero (0).
If the INTERVAL input is zero (the default value), no pericdic scheduling of the associated program
organization units shall occur.

3) The PRIORITY input of a task estahblishes the scheduling priority of the associated program
organization units, with zero (0) being highest priority and successively lower pricrities having
successively higher numeric values. As shown in table 50, the priority of a program organization
unit (that is, the priority of its associated task) can be used for preemptive or non-preemptive
scheduding.

a) In non-preemptive scheduling, processing power becomes available on a resource when
execution of a program organization unit or operating system function is complete. When
processing power is available, the program organization unit with highest scheduled priority
shall begin execution. |f more than one program organization unit is waiting at the highest
scheduled priority, then the program organization unit with the longest waiting time at the
highest scheduled priority shall be executed.

b) In preemptive scheduling, when a program organization unit is scheduled, it can interrupt the
execution of a program organization unit of lower pricrity on the same resource, that is, the
execution of the lower-priority unit can be suspended until the execution of the higher-priority
unit is completed. A program organization unit shall not interrupt the execution of ancther unit
of the same or higher priority.

NOTE - Depending on schedule priorities, a program organization unit might not begin
execution at the instant it is scheduled. However, in the examples shown in
table 50, all program organization units meet their deadlines, that is, they all
compiete execution before being scheduled for re-execution. The manufacturer
shail provide information to enabie the user to determine whether all deadlines
will be met in a proposed configuration,

4) A program with no task association shall have the lowest system priority. Any such program shall
be scheduled for execution upon "starting” of its resource, as defined in 1.4.1, and shall be re-
scheduled for execution as soon as its execution terminates.

5) When a function block instance is associated with a task, its execution shal be under the exciusive
control of the lask, independent of the rules of evaluation of the program organization unit in which -
the task-associated function block instance is declared.



IEC DIS 1131-3 =111 -

6) Execution of a function block instance which is not directly associated with a task shall follow the
normal rules for the order of evaluation of language elements for the program organization unit
(which can itself be under the control of a 1ask) in which the function biock instance is declared.

7) The execution of function blocks within a program shall be synchronized to ensure that data
concurrency is achieved according to the following rules:

a) If a function block receives more than one input from another function biock, then when the

b}

tormer is executed, ail inputs from the latter shall represent the results of the same evaluation.
Eor instance, in the example represented by figure 212, when Y2 is evaluated, the inputs Y2.A
and Y2.B shall represent the outputs Y1.C and Y1.D from the same {not two different}
gvaluations of Y1.

If two or more function blocks receive inputs from the same function block, and il the
=destination” blocks are all explicitly or implicitly associated with the same task, then the inputs
to all such "destination” blocks at the time of their evaluation shall represent the results of the
same evaluation of the "source” block. For instance, in the example represented by figures 21b
and 21c, when Y2 and Y3 are evaluated in the normal course of evaluating program P1, the
inputs Y2.A and Y2.B shall be the results of the same evaluation of Y1 as the inputs Y3.A and

Y3.B.

Provision shall be made for storage of the outputs of functions or function blocks which have explicit
task associations, of which are used as inputs to program organization units which have explicit task
associations, as necessary to satisty the rules given above.

Table 50 - Task features

No. Description/Examples
1a Textual declaration of periodic TASK (feature 5a of table 49)
1b Textual declaration of non-periodic TASK (feature 5b of table 49)
Graphical represertation of TASKs within a RESQURCE
TASKNAME
trmmm———— +
| TASK J
BCOL---|SINGLE |
TIME=--~-| INTERVAL |
UINT---|PRICRITY |
Fm——————— +
23 Graphical representation of periodic TASKs
SLOW 1 FAST 1
frm—mm—m——— + tommm - —— +
| TASK i |  TASK |
‘ ISINGLE | | SINGLE i
i t#20ms~--{ INTERVAL | t#10ms---| INTERVAL |
* 2---{PRIORITY | 1==={PRIORITY |
e o e + o o o e +

(continued on following page}




-112- . IEC DIS 11313

Tabie 50 - Task features (continued)

No. Description/Examples
2 Graphical representation of non-periodic TASK ,
INT_2
from—————— +
| TASK §
2---1SINGLE i
{ INTERVAL |
lw=w | PRIORITY !
fomm - ——— +
3a Textual association with PROGRAMs {feature 6a of table 49}
3b Textual association with FUNCTION BLOCKSs (feature 6b of table 48}
43 Graphical association with PROGRAMs {within RESOURCEs)
RESOURCE STATICON 2
Pl P4
Fom———— % s e o +
i F | | H i
i ! | i
i | I |
Fom———— + o ——————— +
i PER_2 | | INT 2 |
tomm———— + tmm——————— +
END_RESOURCE
. Graphical association with FUNCTION BLOCKs

(within PROGRAMs inside RESOURCES)

RESOURCE STATION_1

P2
o e e 1 e P O o B T O e e A e o
! G
{
! FB1 FB2
| $rmm———— + omm—— -
} i A | i B i
. ! i | ] i
} ! } i |
! bmm——— + tm——— +
i JSLOW_11 FFAST 11
[ o + tm———— +
+ ———————————————————————————————————————————————————

END_RESOURCE

(continued on following page)




IEC DIS 1131-3 - 113 -

Tabie 50 - Task features (continued)

No. " Description/Examples
Ba Non-preemptive scheduling
Example 1:

- RESOURCE STATION_1 as configured in figure 20
- Execution times: P1 = 2 ms; P2 =8 ms; P2.FB1 = P2FB2 = 2 ms (NOTE 3)
-STATION_ i siaris att=0

SCHEDULE (repeats every 40 ms)

f{ms) Executing Waiting
G p2.FBz @ 1 P1 @ 2, P2.FB1 @2, P2
2 P1l@2 p2FRB1 @2 P2
4 peFB1@2 P2
8 P2
10 P2 pz.FB2 @1
14 p2.rE2@ 1 P2
16 p2 (P2 restarts)
20 P2 P2.FB2@ 1. P1@2 P2FB1 @2
24 P2.FB2 @1 Pt @2 P2FB1@2 P2
26 P1@2 P2FB1 @2 P2
28 P2FB1 @2 P2
30 P2FB2 @1 Pz
32 P2
40 pP2.FB2@ 1 P1@2, P2.FB1 @2 P2
Example 2:

- RESOURCE STATION_2 as configured in figure 20
. Execution times: P1 =30 ms, P4 = 5ms, P4.FB1 = 10 ms (NOTE 4)
-INT_2 is triggered at t = 25, 50, 90,..ms
-STATION 2starts att=0

SCHEDULE
t(ms) Executing Waiting
- 0 T P1@2 P4.FB1 @2
% | 25 P1@2 P4FB1 @2 P4@ 1
30 P4 @1 P4FB1 @2
35 PAFB1 @ 2 ' T
50 P4 @ 1 PI@2PAFB1@2
55 P1@2 P4.FB1 @2
85 PAFB1 @2
o0 PAFBI @2 P4@ 1
95 P4@ 1
100 P1@2 P4FB1@2

(continued on following page)



o §14 « {EC DIS 1131-3

Table 50 - Task features (continued)

No. Description/Examples
5 Preermptive scheduling
Example 2:

- RESOURCE STATION_1 as configured in figure 20
- Execution times: P1 =2 ms; P2=8ms; P2.FB1 = P2.FB2 » 2 ms (NOTE 3}
- STATION_ i stants att = 0

SCHEDULE
t{ms) Executing Waiting

0 pP2FB2 @1 P1@2 P2FB1 @2, P2

2 Pi@2 p2FrBi@2 P2

4 : P2FB1 @ 2 P2

& P2 -

10 P2.FB2 @ 1 B2

12 P2

16 P2 (P2 restans)

20 p2.FB2@1 Pi@2 P2FB1 @2 P2
Example 4:

- RESOURCE STATION_2 as configured in figure 20
- Execution times: P1 = 30 ms, P4 = S ms, P4.FB1 = 10 ms (NOTE 4)
-INT_2is triggered at t = 25, 50, 80, ... ms
- STATION_Z2starts att =0

SCHEDULE
t(ms) Executing Waiting
0 PI@2 PAFB1 @ 2
25 P4@1 PiI@2 PaFB1 @2
30 P1@ 2 P4FB1 @2
35 P4FB1 @ 2 '
50 P4 @1 PI@2 PAFB1I @2
55 P1@2 P4FB1@2
85 P4FB1 @ 2
a0 Pa@ 1 P4.FB1@2
95 P4FB1 @2
100 Pi@2 PaFB1 @2
NOTE 1 - Details of RESQURCE and PROGRAM declarations are not shown; see 2.7
and 2.7.1.
N NOTE 2 - The notation "X @ Y" indicates that program organization unit X is scheduled
or executing at priority Y.
NOTE 3 - The execution times of P2.FB1 and P2.FB2 are not included in the execution
time of P2.

NOTE 4 - The execution time of P4.FB1 is not included in the execution time of P4,




IEC DIS 11313 : -115-

RESOURCE R1
fastl glowl
et + e +
i TASK b ! TASK I
£ #10mg~==| INTERVAL | r§20ms~-~| INTERVAL |
Jmew | PRIORITY | Z=== |PRIORITY |
B e + o o e e +
Pl
PROGRAM X
¥i Y2
B + o o e +
S S| oY
—e— | B Cfmmmahmm = e -y Clmw-
== |B Dj=wme |- {B Dfm=-
o e — + | i o —— +
|slowl] { | tfasclld
fm—— + 1 f———— +
[
1t Y3
| ] Ame=—- +
T I I SR
+--{--]A Cle=--
+--{B Di-=~
Fr——— +
[fastl|
tm——— +
END_PROGRAM

Figure 21a - Synchronization of function blocks with explicit task associations



- 116 - ~ IEC DIS 11313

RESOURCE R1
fasrl slowl
trmmm——————— + e e +
{ TASK i | TASK i
t#10ms---|INTERVAL | t$20msg--~| INTERVAL |
1=-=-=fPRICRITY | 2=-=-«|PRIORITY |
e o s e + o o o e o +
Pl
PROGRAM X
¥i ¥2
o o v e + B +
[ A
~=-1{A Cluwowomdmmm———— (A Cl===
-—=iB Di-cmw|wrtmre——— iB Df==-
o + b e +
| fastl} o1
oo + i
o
P Y3
] | o e +
! I D SR
+-=|{--1A Cl=--
+--1B Dl=w-
o +
END_PROGRAM
slowl

Figure 21b - Synchronization of function blocks with implicit task associations



IEC DIS 1131-3 ' -117-

RESQURCE R1
fastcl slowl
o v e e e e + e e e o +
i TASK { { TASK :
t#l0mSs === | INTERVAL | r$20ms~-- | INTERVAL |
1---|PRIORITY | 2---|PRIORITY |
e e o e e 0 + o o e e e +
Pl
PROGRAM X
Yl Y2
dpomnn + e +
oY R
——=1{A Cl-—wetmmmmwwr— |A Cl=em
~--=1B [ Rl e R |B D|eww
dmae—— + i e +
| fastl| I |slowl!
f——— + | dora +
P
P Y3
| | Am—— +
[ A A
+==-|=-=1A Cl--~
+--1{B Dj=—-
o +
fslowl]
dm———— +
END_PROGRAM

Figure 21c - Explictt task associations equivalent to figure 21b

.

.



- {18 - IEC DIS 1131-3

3. Textual languages

The textual lanquages defined in this standard are IL (Instruction List) and ST {Structured Text}. The
sequential tunction chart (SFC) elements defined in 2.6 can be used in conjunction with either of these

languages.
3,1 Common siements
The texiual elements specified in clause 2 shall be common o the textual languages (Il and 8T

defined in this clause. in particular, the foliowing program structuring elements shail be common to
textual languages:

TYPE..END_TYPE (2.3.3)
VAR..END_VAR (2.4.3)
VAR_INPUT. .END_VAR (2.4.3)
VAR_OUTPUT..END_VAR (2.4.3)
VAR_IN_OUT...END_VAR (2.4.3)
VAR_EXTERNAL...END_VAR (2.4.3)
FUNCTION ... END_FUNCTION (2.5.1.3)
FUNCTION_BLOCK...END_FUNCTION_BLOCK  (2.5.2.2)

PROGRAM...END_PROGRAM (2.5.3)
STEP..END_STEP (2.6.2)
TRANSITION...END_TRANSITION (2.6.3)
ACTION...END_ACTION (2.6.4)



IEC DIS 11313 =318 -

3.2 Language IL {Instruction List)

This subclause defines the semantics of the IL {Instruction List) language whose formal syntax is
given in B.2.

3.2.1 instructions

As illustrated in table 51, an instruction fist is composed of a sequence of instructions. Each
instruction shall begin on a new line and shall contain an operator with optional modifiers, and, if
necessary for the particular operation, one or more operands separated by commas. Operands can
be any of the data representations defined in 2.2 for literals and 2.4 for variables.

The instruction can be preceded by an identifying labef foliowed by a colon (:). A comment, as defined

in 2.1.5, if present, shail be the last element on a iine. Empty fines can be inseried between
instructions. '

Tabie 51 - Examples of instruction fields

Label Operator Operand Comment
START: LD $IX1 (* PUSH BUTTON =}
ANDN $MXS (* NOT INHIBITEb *)
ST £QX2 (* FBN ON *)

3.2.2 Operators, modifiers and operands

Standard operators with their aliowed modifiers and operands shall be as listed in table 52. The typing
~ of operators shall conform to the conventions of 2.5.1.4. _

Unless otherwise defined in table 52, the semantics of the operators shall be
result := result OP operand
That is, the value of the expression being evaluated is replaced by its current value operated upon by
the operator with respect to the operand. For instance, the instruction AND %IX1 is interpreted as
result := resuit AND %IX1

@ comparison operators shall be interpreted with the current result to the fett of the comparison and
the operand to the right, with a Boolean result. For instance, the instruction "GT %IW10" will have the
Bodlean result 1 if the current resutt is greater than the vaiue of Input Word 10, and the Boolean resutt
0 otherwise, ) ,

The modifier "N indicates Boolean negation of the operand. For instance, the instruction ANDN %!1X2
is interpreted as :

*

result := resutt AND NOT %IX2



- 120 - IEC DIS 11313

The left parenthesis modifier *(" indicates that evaluation of the operator shall be deferred untit a right
parenthesis operator *)" is encountered, e.g., the sequence of instructions

AND{ %IX1

OR %IX2

)

result i= resull AND (%iX1 OR %IX2)

shall be interpreted as

The modifier "C" indicates that the associated instruction shall be performed only i the value of the
currently evaiuated result is Boolean 1 (or Boolean 0 if the operator is combined with the "N* modifier).

Table 52 - Instruction List (L} operators

No. | Operator miﬁﬁr; Operand Semantics -
1 LD N {Note 2) Set current result equal to operand
2 8T N {Note 2} Store current result to operand location
3 S {Note 3) BOOL Set Boolean operand to 1
R {Note 3) BOOL Reset Boolean operandto 0
4 AND N, ( BOOL Boolean AND
5 & N, { BOOL Boclean AND
6 OR N, ( BOCL Boolean OR
7 XOR N, { BOOL Boolean Exclusive OR
8 ADD { (Note 2) Addition
8 SUB { (Note 2) Subtraction
10 MUL { (Note 2) Multiplication
11 Dlv { (Note 2) Division
12 GT { (Note 2) Comparison: »
i3 GE { (Note 2) Comparison: >=
14 EQ { (Note 2) Comparison: =
15 NE { (Note 2) Comparison: <
16 LE { (Note 2) Comparison: <=
17 LT { (Note 2) Comparison: <
18 JMP C.N LABEL Jump to label
19 CAL C,N NAME Call function block (Note 4)
20 RET C.N Retum from called function or function block
21 ) Evaiuate deferred operation

NOTE 1 - See 3.2.2 for explanation of modifiers and evaluation of expressions.
NOTE 2 - These operators shail be either overloaded or typed as defined in 2.5.1.4. The

current result and the operand shall be of the same type.

Boolean 1.

NOTE 3 - These operations are performed if and only it the value of the current result is

NOTE 4 - The function biock name is followed by a parenthesized argument list as defined in
3.2.3.
NOTE 5 - When a JMP instruction is contained in an ACTION... END_ACTION construct, the

operand shall be a label within the same construct.




[EC DIS 1131-3 : « {21 -

3.2.3 Functions and function blocks

Functions as defined in 2.5.1 shall be invoked by placing the furction name in the operator field. The
current resuft shall be used as the first argument of the function. Additional arguments, if required,
shail be given in the operand field. The value returned by a function upon the successful execution of
a RET instruction or upon reaching the physical end of the function shall become the “current result”
described in 3.2.2.

Function blocks as defined in 2.5.2 can be invoked conditionally and unconditionally via the CAL (Cali)
operator listed in table 52. As shown in table 53, this invocation can take one of three forms. The
input operators shown in table £4 ean be used in conjunction with feature 3 of tabie 53.

Table 53 - Function block invocation features for iL language
No. Description/Example

1 | CAL with input list:
CAL C10(CU:=%IXi0, BV:=15)

2 | CAL with loadsstore of inputs:

1D 15

ST Cl0.PV
LD £IX10
ST ci10.CU
CAL Cl0

3 | Use of input operators:

LG 15

PV C10

LD $IX10

CcuU ci¢ -

NOTE - A declaration such as VAR C10: CTU ;END_VARis
assumed in the above examples.

Table 54 - Standard function block input operators for IL language

No. Operators FB Type Reference
4 S1.R SR 2.5.2.3.1
- 5 S.R1 RS 2.5.23.1
6 CLK R_TRIG 2523.2
7 CLK F_TRIG 2.523.2
8 CUR.PV CTuU 25.233
9 CD.LD.PV CTD 25233
10 CU,CDRLD PV CTuD 25233
11 INPT TP 25234
12 IN,PT TON 25234
13 INPT TOF 25234




- 122 - IEC DIS 11313

3.3 Language ST (Structured Text}

This subclause defines the semantics of the ST (Structured Text) language whose syntax is defined in
B.3. In this language, the end of a textual line shall be treated the same as a space (SP) character,
as defined in 2.1.4,

3.3.t Expressicns

An expression is a construct which, when evaluated, yields a vaie corresponding {¢ one of the data
fypes defined in 2.3.1 and 2.3.3.

Expressions are composed of operators and operands, An operand shall be a literal as defined in 2.2,
a variable as defined in 2.4, a function invocation as defined in 2.5.1, or another expression.

The operators of the ST language are summarized in table 55. The evaluation of an expression
consists of applying the operators to the operands in a sequence defined by the operator precedence
shown in table 55. The operaior with highest precedence in an expression shall be applied first,
foliowed by the operator of nexi iower precedence, etc., until evaluation is complete. Operators of
equal precedence shall be applied as written in the expression from left to right. For example, if A, B,
C, and D are of type INT with values 1, 2, 3, and -4, respectively, then

A+B-C*ABS(D)
shall evaluate 10 -9, and

{(A+B-C)*ABS(D)
shall evaluateto O .

When an operator has two operands, the leftrmost operand shall be evaluated first. For example, in
the expression

SIN{AY"COS(B)
the expression SIN(A) shall be evaluated first, followed by COS(B), followed by evaluation of the
product. _

Boolean expressions may be evaluated only to the extent necessary to determine the resultant value.
For instance, if A<=B, then only the expression (A>B) would be evaiuated to determine that the value

of the expression
(A>B) & (C<D)
is Boolean zero.

Functions shall be invoked as elements of expressions consisting of the function name followed by a
parenthesized list of arguments, as defined in 2.5.1.1.

When an operator in an expression can be represened as one of the overioaded functions defined in
2.5.1.5, conversion of operands and resuits shall follow the rule and examples given in 2.5.1.4.



IEC DIS 1131-3 - 323 -

TABLE 55 - Operators of the ST language

No. Operation Symbol Precedence
1 Parenthesization (expression) HIGHEST
2 Function evaluation idertifier{argument list)

Exampies: LN{A), MAX(X)Y), efc.
3 Exponentiation (Note 2) -
4 Negation _—
5 Complemert NOT
8 ' Muttiply .
7 ~ Divide /
g Modulo MOD
g Add +
10 Subtract -

11 Comparison <, >, 4w, >
12 Equality =
13 inequality <>
14 Boolean AND &

15 Boolean AND AND
16 Boolean Exclusive OR XOR
17 Boolean OR CR LOWEST

NOTE 1 - The same restrictions apply to the operands of these operators as to the inputs of the
corresponding functions defined in 2.5.1.5.

NOTE 2 - The result of evaluating the expression A**B shall be the same as the result of
evaluating EXP(B*LN(A)). ‘




- 124 - - IECDIS 11313

3.3.2 Statements

The statements of the ST language are summarized in table 56. Statements shall be terminated by
semicolons as specified in the syntax of B.3.

Tabie 56 - ST language statements

No. Statement type/Reference Examples -
1 Agsignment (3.3.2.1) , A =B CV = CVa1; C = SIN(X) e
2 Function block invocation and FB output usage] CMD_TMR(IN:=%!IX5, PT:=»T#300ms} ;
{3.3.2.2) A= CMD_TMR.Q:
RETURN (3.3.2.2) RETURN ;
4 IF(3.3.2.3) D:=BB-4"AC,

IFD < 0.0 THEN NROOTS = 0 ;
ELSIFD = 0.0 THEN
NROOTS = 1 ;
X1 1= - BI2.0%A) ;
ELSE
NROOTS = 2 ;
X1 := (- B + SQRT(D)/2.0°A) ;
X2 = (- B - SQRT(D)V(2.0°A) ;
END_IF;

5 CASE (3.3.2.3) TW := BCD_TO_INT(THUMBWHEEL):
TW_ERROR := 0;
CASE TW OF

1,5: DISPLAY :x OVEN_TEMP;

2: DISPLAY := MOTOR_SPEED;

3: DISPLAY := GROSS - TARE;

4,6..10: DISPLAY = STATUS(TW - 4);
ELSE DISPLAY := 0 ;

TW_ERROR = 1;

END_CASE;
QW100 := INT_TO_BCD(DISPLAY);

6 . FOR (3.3.2.4) J =101
FOR|:=1TQO 1008BY 2D0O
iIF WORDS]!] = 'KEY' THEN
Ji-l;
EXIT;
END_IF;
END_FOR ;
7 WHILE (3.3.2.4) J=1;
WHILE J <= 100 & WORDS[J] <> KEY' DO

o mde2
END_WHILE ;

(continued on following page)

Table 56 - ST language statements (continued)

No. Statement type/Heference Examples




IEC DIS 1131-3 : =125 -

8 REPEAT (3.3.2.4) J=-1;

REPEAT
J=J+2;

UNTIL J = 101 OR WORDS[J] = 'KEY'
END_REPEAT ;

g EXIT (3.3.2.4) EXIT:

10 Empty Statement NN

NOTE - if the EXIT statement (9} is supported, then it shall be supported for all of the fteration
statements (FOR, WHILE, REPEAT) which are supported in the implementation.

3.3.2.1 Assignment statements

The assignment statement replaces the current value of a single or multi-element variable by the
result of evaluating an expression. An assignment statement shall consist of a varable reference on
the left-hand side, followed by the assignment operator “=" {ollowed by the expression to be
evaluated. For instance, the statement :
A=B,;

would be used 1o replace the single data value of variable A by the current value of variable B if both
were of type INT. However, if both A and B were of type ANALOG_CHANNELﬂ_CONF!GUF!ATiON as
described in table 12, then the values of all the elements of the structured variable A would be
replaced by the current vaiues of the corresponding elements of variable B.

As illustrated in figure 6, the assignment statement shall also be used to assign the value to be
retumed by a function, by placing the function name to the left of an assignment operator in the body
of the function declaration. The vaiue retumed by the function shall be the result of the most recent
evaluation of such an assignmernt. it is an error o retum from the evaluation of a function with the
*OK" output non-zero uniess at least one such assignment has been made. -

1.3.2.2 Function and function biock contﬁ:at siatements

Function and function block control statements consist of the mechanisms for invoking function blocks
and for retumning control to the invoking entity before the physical end of a function or function block.

Function evaluation shall be invoked as pan of expression evaluation, as specified in 3.3.1.

« Runction blocks shall be invoked by a statement consisting of the name of the function block followed
by a parerthesized list of named input parameter valtue assignments, as illustrated in table 55. The
order in which input parameters are listed in a function block invocation shall not be significant. 1t is
not required that all input parameters be assigned values in every invocation of a function biock. If a
particular parameter is not assigned a vale in a function block invacation, the previously assigned
value (or the initial vaiue, it no previous assignment has been made) shall apply.

The RETURN statement shall provide early exit from a function or function block (e.g., as the result of
the avaluation of an iF statement).



~196 - IEC DIS 11313

3.3.2.3 Ssiection statements

Selection statements include the IF and CASE statements. A selection statement selects one {or a
group) of its component statements for execution, based on a specified condition. Examples of
selection statements are given in table 56.

The IF statement specifies that a group of statements is {o be executed only i the associated Boolean
expression evaluates to the value 1 {true). !f the condition is faise, then either no staiement is to be
executed, of the statement group foliowing the ELSE keyword for the ELSIF keyword if #ts associated
Boolean condition is true) is o be executed. :

The CASE statement consiste of an expression which shali evaiuate to a variable of type INT {the
“selector”), and a list of statement groups, each group being labeled by one or more integers of
ranges of integer values. !t specifies that the first group of statements, one of whose ranges contains
the computed value of the seiector, shall be executed . If the value of the selector does not occur ina
range of any case, the statement sequence following the keyword ELSE (if it occurs in the CASE
statement) shall be executed. Otherwise, none of the statement sequences shall be executed.

3.3.2.4 lteration statements

lteration statements specify that the group of associated statements shall be executed repeatedly.
The FOR statement is used if the number of iterations can be determined in advance; otherwise, the
WHILE or REPEAT constructs are used.

The EXIT statement shall be used to terminate tterations before the termination condition is satisfied.

When the EXIT statement is located within nested iterative constructs, exit shall be from the innermost
loop in which the EXIT is located, that is, contro! shall pass to the next statement after the first loop
terminator (END_FOR, END_WHILE, or END_REPEAT) following the EXIT statement. For instance,
after executing the statements shown in figure 22, the value of the variable SUM shail be 15 i the
value of the Boolean variable FLAG is 0, and 6 if FLAG=1. '

SUM := 0 ;
FOR I := 1 TO 3 DO
FOR J := 1 TO 2 DO
IF FLAG THEN EXIT ; END_IF
SUM := SUM + J ;
END_FOR ;
SUM := SUM + I ;
END_FOR ;

Figure 22 - EXIT statement example

The FOR statement indicates that a statement sequence shall be repeatedly executed, up to the

END_FOR keyword, while a progression of values is assigned to the FOR loop control variable. The

dontrol variable, initial value, and final vaiue shall be expressions of the same integer type (SINT, INT,

or DINT)} and shall not be attered by any of the repeated statements. The FOR stalement increments

the controf variable up or down from an initial vaiue to a final value in increments determined by the

value of an expression; this value defaults to 1. The test for the termination condition is made at the .
beginning of each iteration, so that the statement sequence is not executed if the initial value exceeds

the final vaiue. The value of the control variable after completion of the FOR loop is implementation-

dependent.



[EC DIS 1131-3 - 927 -

An example of the usage of the FOR statement is given in feature 6 of table 56. in this example, the
FOR ioop is used to determine the index J of the first occurrence (if any) of the string 'KEY' in the odd-
numbered elements of an array of strings WORDS with a subscript range of (1..100). If no occurrence
is found, J will have the value 101.

The WHILE statement causes the sequence of statements up to the END_WHILE keyword to be
executed repeatedty until the associated Beolean expression is false. i the expression is initially
faise, then the group of statements is not executed at all. For instance, the FOR...END_FOR
example given in tabie 56 can be rewritten using the WHILE...END_WHILE construction: shown in
fabie 56. : : : _ :

The REPEAT statement causes the sequence of statements up 1o the UNTIL keyword to be executed
repeatedly (and at least once) until the asscciated Boolean condition is true. For instance, the
WHILE..END_WHILE exampie given in table 56 can be rewritten using the REPEAT. .END_REPEAT
construction shown in table 56.

The WHILE and REPEAT statements shall not be used to achieve interprocess synchronization, for
example as a “wait loop™ with an extemnally determined termination condttion. The SFC elements
defined in 2.6 shall be used for this purpose.

it shall be an errorin the sense of 1.5.1f a WHILE or REPEAT statement is used in an algorithm for
which satisfaction of the loop termination condition or execution of an EXIT statement cannot be -
guaranteed.



- 928 - . ECDIS 11213

4. Graphic hnguages

The graphic languages defined in this standard are LD (Ladder D:agram) and FBD (Funct:on Block
Diagram). The sequential function chart (SFC) elements defined in 2.6 can be used in conjunction
with either of these languages.

4.1 Common elements

The elements defined in this clause apply to both the graphic languages in this Standard, that is, LD
(Ladder Diagram} and FBD {(Function Block Diagram), and to the graphic representation of sequential
function chart {SFC) elements.

4.1.1 Representation of lines and blocks

The graphic language elements defined in this clause are drawn with line elements using characters
from the ISQ 646 character set, or using graphic or semigraphic elements, as shown in table 57.

Lines can be extended by the use of connectors as shown in {able 57. No storage of data or
association with data elements shall be associated with the use of connectors; hence, to avoid
ambiguity, it shall be an error if the identifier used as a connector label is the same as the name of
ancther named element within the same program organization unit.

4.1.2 Direction of flow in networks

A network is defined as a maximal set of interconnected graphic elements, excluding the left and nght
rails in the case of networks in the LD language defined in 4.2. Provision shall be made to associate
with each network or group of networks in a graphic language a network /abel delimited on the right by
a colon (:). This label shall have the form of an identifier or an unsigned decimal integer as defined in
clause 2 of this Part. The scope of a network and its label shall be /ocal to the program crganization
untt in which the network is located. Examples of networks and network labels are shown in annex F.

Graphic languages are used to represent the flow of a conceptual quantity through one or more
networks representing a control plan, that is:

- "Power flow", analogous to the flow of electric power in an electromechanical relay system,
typicaily used in relay ladder diagrams;

- "Signal flow", analogous to the flow of signals between elements of a ssgnat processing system,
typically used in function block diagrams;

- "Activity flow™, analogous to the flow of control between elements of an organization, or between
the steps of an electromechanical sequencer, typically used in sequential function charts.

The appropriate conceptual quantity shall flow along lines between elements of a network according to
the following rules:

1) Power flow in the LD language shall be from left to right.

2) Signal flow in the FBD language shall be from the output (right-hand) side of a function or
function biock to the input (left-hand) side of the function or function block(s) so connected.

3) Activity fiow between the SFC elements defined in 2.6 shall be from the bottom of a step through
the appropriate transition to the top of the comresponding successor step(s).



{EC DIS 1131-3 - 129 -
Table 57 - Representation of ines and blocks
No. Feature Example
Horizontal lines:
ISO 646 *minus” character ==
2 Graphic or semigraphic
Vertical lines:
ISC 646 “vertical line” character |
Graphic or semigraphic
Horizontal/vertical connection: !
8 ISC 646 “plus” character -
;
8 Graphic or sernigraphic
Line crossings without connection: | !
7 iSO 646 characters ] mmmmwees J
o Lo
8 Graphic or semigraphic
Connected and non-connected corners: i g
- i o e
g IS0 646 characters |
—-————— e
T
10 Graphic or semigraphic
Blocks with connecting lines: |
o o e +
-t |
11 iSO 846 characters | jmm—
ad 1
o ———— +
|
12 Graphic or semigraphic ‘
13 Connectors using ISO 646 characters:
_ Connector |  mmmeemssss >0TTO>
* (ontinuation of a connected line SOTTOP mmmmenm
14 Graphic or semigraphic connectors




-130 - IEC DIS 1131-3

4.1.3 Evaiuation of networks

The order in which networks and their elements are evaluated is not necessarily the same as the
order in which they are labeled or displayed. Similarly, & is not necessary that all networks be
evaiuated before the evaluation of a given network can be repeated. However, when the body of a
program organization unii consists of several networks, the results of network evaluation within said
body shall be functionally equivalent to the cbservance of the following rules:

1) No element of a network shall be evaluated until the states of ali of is inputs have been
svaluated.

2} The svaluation of a network element shall not be complete until the states of all of its outputs
have been evakiated.

3} The evaluation of a network is not complete untit the outputs of all of its elements have been
svakiated, even H the nefwork contains ohe of the execution control slemenis defined in
4.1.4,

{4) The order in which networks are évakzatad shail conform to the provisions of 4.2.6 for the LD
language and 4.3.3 for the FBD language.

A feedback path is said 1o exist in a network when the output of a function or function biock is used as
the input to a function or function biock which precedes it in the network; the associated variable is
called a feedback vanable. For instance, the Boolean variabie RUN is the feedback variabie in the
example shown in figure 23. A feedback variable can aiso be an output element of a function bilock
data structure as defined in 2.5.2. _

Feedback paths can be utilized in the graphic languages defined in 4.2 and 4.3, subject to the
following rules:

1) Eprcrt loops such as the one shown in 23a shall only appear in the FBD language defined in
4.3.

2) it shall be possible for the user to define the order of execution of the elements in an explicit
loop, for instanca by selection of feedback variables to form an implicit loop as shown in
figure 23b.

3) Feedback variables shali be initialized by one of the mechanisms defined in clause 2, The initial
vaiue shall be used during the first evaluation of the network.

4) Once the slemnent with a feedback variable as output has been evaluated, the new value of the
feodback varniable shall be used urtil the next evaluation of the element. :



IEC DIS 1131-3

8)

B}

<)

=131 -

et
ENABLE==~| & |====~ RUN-=—+
pommf !
e i
START1==={>=] | ===+ |
STARTZ-=--| | s
et B s
| ode—=t |
FU————— R +
fom——t
ENABLE-==| & f-==== RUN
i
gt ! dm——t
START1-~-|>=1|--=+
STARTZ=--1 |
RUN---] |
ot
i STARTI ENABLE RUN |
T Rt S B Rt b ()=t
| STARTZ | |
tmmm | fmmmmt i
| RUN a |
el T et |
1

Figure 23 - Feedback path exampie
a) Explicit ioop
b) Implicit loop
¢) LD language equivaient




- 132~ - IEC DIS 1131-3

4.1.4 Execution control elements

Transfer of program control in the LD and FBD languages shall be represented by the graphical
elements shown in table 58.

Jumps shall be shown by a Boolean signal line terminated in a double arrowhead. The signal line for
a jump condition shall originale at a Boolean variable, at a Boolean output of a function or function
nlock, or on the power flow line of a ladder diagram. A transfer of program control to the designated
network label shall occur when the Booiean value of the signal line is 1 (TRUE), thus, the
unconditional jump is a special case of the conditional jump.

The target of a jump shall be a network label within the program organization unit within which the
jump occurs. if the jump occurs within an ACTION...END_ACTION construct, the target of the jump
shall be within the same construct. : :

Conditional returns from functions and function blocks shall be implemented using a RETURN
construction as shown in table 58. Program execution shall be transterred back to the invoking entity
when the Boolean input is 1 (TRUE), and shall continue in the normat fashion when the Boolean input
is 0 (FALSE). Unconditional returns shall be provided by the physical end of the function or function
block, or by a RETURN element connected to the left rail in the LD language, as shown in table 58.



IEC DIS 1131-3 =133 -
Tabie 58 - Graphic execution control eiements
No. Symbol/Example Explanation
Unconditional Jump:
1 1---~>>LABELA FBD Language
|
y 4wm==>>LABELA LD Language
i
Conditionai Jump
3 ¥---->>LABELB (FBD Language)
ot Example:
BIX20~=w=| & |~—=>>NEXT Jurnp Condition
EMX50-~~ | |
g
NEXT:
R s
EIX2B—== | >l |==~%QX100 Jump Target
EMX60--— | !
o
I X Conditional Jump
4 +-| |=---->>LABELB (LD Language)
;
i
i $IX20 LMX50 Example:
dmmm| | mm——— i }===>>NEXT Jump Condition
{
|
NEXT ! Jump Target
| $IX25 QX100 |
et B LT Dbettall B Rt
| EMX60 | |
R e B bt i
! I
| X Conditional Return:
5 4==| |=-—=<RETURN> LD Language
. t
= & ¥---<RETURN> FBD Language
Unconditional Return:
END_FUNCTION from FUNCTION
END_FUNCTION_BLOCK from FUNCTION_BLOCK
[ Altemnative representation
B +---<RETURN> in LD language
|




134- IEC DIS 11313

4.2 Language LD (Ladder Diagram)

This subctause defines the LD language for ladder diagram programming of programmable
controliers.

A LD program enables the programmabie controfier o test and modify data by means of standardized

graphic symbols. These symbols are laid out in networks in a manner similar to a “rung” of a relay
ladder logic diagram. LD networks are bounded on the feft and right by power rails.

4.2.1 Power rails
As shown in table 53, LD network shall be delimited on the left by a vertical line known as the Jeff
power rai, and on the right by a vertical line known as the right power rail. The right power rail may be

explicit or implied.

Tabie 58 - Power rails

No.| =~ Symboi Description
1 ! Left power rail
P {with attached horizontal link)
!
2 | Right power rail
— (with attached horizontal link)
!

4.2.2 Link elements and states

As shown in table 60, link elements may be horizontal or vertical. The state of the link element shall
be denoted "ON" or "OFF", comresponding to the literal Boolean values 1 or 0, respectwely The term
link state shall be synonymous with the term power flow. _

‘The state of the left rail shall be considered ON unless it is connected to an inactive: SFC step as
defined in 2.6.2. No state is defined for the right rail. .

A horizontal link element shall be indicated by a horizontal line. A horizontal link element transmits the
state of the element on its immediate left to the element on its immediate right.

The vertical link element shall consist of a vertical line intersecting with one or more horizontal link
elements on each side. The state of the vertical fink shall represent the inclusive OR of the ON states
of the horizontal links on its left side, that is, the state of the vertical link shall be:

- OFF it the states of ali the attached horizontal links fo its left are OFF;
- ON if the state of one or more of the attached horizontal liriks to its left is ON.

i

The state of the vertical link shall be copied to all of the attached horizontal links on #ts right. The
state of the vertical link shall not be copied to any of the attached horizontal links on its left. :



IEC DIS 1131-3 -135-

Table 60 - Link elements

No. Symbol Description
1 | cemmm—c——— Horizontat link
2 ! Vertical link
e e {with atiached horizontal links)
i
o
i
v o

4.2.3 Contacis

A contact is an element which imparts a state to the horizontal link on its right side which is equal io
the Boolean AND of the state of the horizontal link at its left side with an appropriate function of an
associated Boolean input, output, or memory variable. A contact does not modity the value of the
associated Boolean variable. Standard contact symbols are given in table 61. e

4.2.4 Coils

A coil copies the state of the link on its left to the link on its right without modification, and stares an
appropriate function of the state or transtion of the left fink into the associated Boolean variable.
Standard coil symbols are given in table 62. '

4.2.5 Functions and function blocks

The representation of functions and function blocks in the LD language shall be as defined in clause 2
of this Part, with the following exceptions: ; _

1) Actual parameter connections may optionally be shown by writing the appropriate data or
variable outside the biock adjacent to the formal parameter name on the inside.

2) At least one Boolean input and one Boolean output shall be shown on each block to allow for
power fiow through the block.

-

4.2.6 Qrder of network evaluation

Within a program organization unit written in LD, networks shall be evaluated in top to botton order as
they appear in the ladder diagram, except as this order is modified by the execution control elements
defined in 4.1.4. :



. 136 - IEC DIS 11313

Table 61 - Contacts

Static contacts
Symbol Description
ekl Normally open contact
e=i f=- The stats of the left iink is copied to the nght link i the
or state of the associated Boolean variable {indicated by
ewe ===} is ON. Otherwise, the state of the right link is
L : OFF.
H . == . *3_
mxw Normally closed contact )
e VA R The state of the left link is copied to the right link if the
or state of the associated Boolean variable is OFF.
em Otherwise, the state of the right link is OFF.
VA
Transition-sensing contacts
*nw Positive transition-sensing contact
A The state of the right link is ON from one evaluation of this
element to the next when a transition of the associated
or variable from OFF to ON is sensed at the same time that the
wwn state of the left link is ON. The state of the right link shalt be
~~!P!-=~ OFF at all other times.
*ux Negative transition-sensing contact
- N |-~ The state of the right link is ON from one evaluation of this
element to the next when a transition of the associated
or variable from ON to OFF is sensed at the same time that the
nx state of the left link is ON. The state of the right link shall be
—— Nt~ OFF at all other times.

NOTE: As specified in 2.1.1, the exclamation mark "I" shall be used when
a national character set does not support the vertical bar "*.




IEC DIS 1131-3

= 337 =

Table 62 - Coils

Momentary coils

No.

Symbol

Description

T wR

mm( )w-

Coii
‘The state of the left link is copied to the associated
Boolean variable and to the right link.

Hww

Vi

: Negated coil
The state of the left link is copied to the right fink. The
inverse of the state of the left link is copied 1o the
associated Boolean variable, that is, if the state of the
left link is OFF, then the state of the associated variable
is ON, and vice versa.

Latched Coils

LE 2.

-~ (5} -~

SET (latch) coil
The associated Boolean variable is set o the ON state
when the left link is in the ON state, and remains set
unttil reset by a RESET coil. '

kxR

- (R) ==

RESET (uniatch) coil
The associated Boolean variable is reset 10 the OFF
state when the left link is in the ON state, and remains
reset until set by a SET coil.

Retentive coils (see the)

LA B

—-e - (M) ===~

Retemive (Memory) coil

* K

= (SM) = ===

SET retentive {Memory) coil

*xx

- (RM) ===

RESET retentive (Memory) coil

Transition-sensing coils

LB 2 4

- - (P) -

Positive transition-sensing coil
The state of the associated Boolean variable is ON from
one evaluation of this element to the next when a
transition of the feft link from OFF to ON is sensed. The
state of the left link is aiways copied to the right link.

L &4

- (N) -=

Negative transition-sensing coil
The state of the associated Boolean variable is ON from
one evaluation of this element to the next when a
transition of the left link from ON to OFF is sensed. The
state of the left fink is always copied to the right fink.

NOTE - The action of Coils 5, 6, and 7 is identical 1o that of Coils 1, 3, and

4, respectively,

except that the associated Boolean vanable is

automatically decfared to be in retentive memory without the explicit
use of the VAR RETAIN declaration defined in 2.4.2.




- 138 - IEC IS 1131-3

4.3 Language FBD (Funciion Block Diagram)

4.3.1 General

This subciause defines FBD, a graphic language for the programming of programmable controllers
which is consistent, as far as possible, with the documentation standard |IEC 617, Part 12. Whaera
conflicts exist between this standard and IEC 617, the provisions of this standard shall apply for the
programming of programmabile controllers in the FBD language.

The provisions of clauses 2 and 4.1 shall apply to the construction and interpretation of programmable
controller programs in the FBD language.

Exampies of the use of the FBD language are given in annex F.

4.3.2 Combination of slements

Etements of the FBD Ianguage shall be interconnected by signal flow lines iollowing the conventions
of 4.1.2.

Qutputs of function hiocks shall not be connected together. In particular, the "wired-OR" construct of
the LD language is not allowed in the FBD language; an explicit Boolean "OR" block is requ:red
instead, as shown in figure 24. &

8) b)
| a c | tmm—— +
o | b ()t ge——| >=] j=--=C
b | ! B===] |
| | m—+ ! tmm———— +
{ I

Figure 24 - Boolean OR Examples
a) "Wired-OR" in LD language
b) Function in FBD language

4.3.3 Order of network evaluation

Within a program organization unit written in the FBD language, the order of network evaluation shatl
follow the rule that the evaluation of a network shall be compiete before starting the evaluation of
ancther network which uses one or more of the outputs of the preceding evaiuated network. g o



£C DIS 1131-3 =338 -

ANNEX A - Specification method for textual languages (nomnative)

Programming languages are specified in lerms of a synfax, which specifies the allowable
oonbinationsofsynbotswhichcanbeusedlodeﬁneaprmm;andaseto{semantics.wtﬁdx
specily the relationship between programmed operations and the symbol combinations defined by the
symax.

A1 Symax

A syntax is defined by a set of terminal symbois to be utilized for program specification; a set of non-
terminal symbols defined in terms of the terminal symbols; and a set of production rules specitying
those definitions.

A.i1.1 Terminal symbols

The terminal symbols for textual programmable controller programs shall consist of combinations of
the characters in the 1SO 648 character set. For irterchange of programs between systems, these
characters shall be represented by the seven-bit character codes defined in ISO 646.

For the purposes of this Part, terminal textual symbols consist of the appropriate character string
enclosed in paired single or double quotes. For example, a temminal symbol represented by the
character string ABC can be represented by either -

-ABCUI
or

IABCI
This allows the representation of strings containing either single or double guotes; for nstance, a
terminal symbol consisting of the double quote itself wouid be represented by ™.

A special terminal symbol utilized in this syntax is the end-of-line delimiter, which is reprasented by the
unquoted character string EOL. This symbol shall normally consist of the FES (CR = carriage retum)
character defined by 1SO 646. Language implementors shall specify any deviation from this usage; in
any case, no characters other than those in SO 646 are aliowed.

A second special terminal symbol utilized in this syntax is the "null string”, that is, a string containing
no characters. This is represented by the terminal symbol NIL. -

A.1.2 Non-terminal symbols

Non-terminal textual symbols shall be represented by strings of lower-case letters, numbers, and the
underiine character (), beginning with a lower-case letter. For instance, the strings

nontermt
and
noh_term_2
are valid nonterminal symbots, while the strings
3nonterm
and
nonterm4d

are not.



140 - JEC DIS 11313

A.1.3 Production rules
The production rules for textual programmable controlier programming languages shall form an
extended grammar in which each rute has the form
non_terminal_symbol ;= extended_structure
This rule can be read as:
A non_terminal_symbol can consist of an extended_structure.”

Extended structures can be constructed according to the foibwinQ ruies:
1) The null string, NIL, is an extended structure.
2) A terminal symbol is an extended structure.
3) A non-terminal symbol is an extended structure.
4) If S is an extended structure, then the following expressions are aiso extended structures:
(S), meaning S itsetf.
{S}, closure, meaning zerc or more concatenations of S.
[S], option, meaning zero or one occurrence of 8.

5) If S1 and S2 are extended structures, then the following expressions are extended structures:
$1|82, aftemation, meaning a choice of S1 or S2.
S1 82, concatenation, meaning St followed by 52.

6) Concatenation precedes altemation, that is, S1 | 82 S3 is equivalent to S1 (S2 SS)
and S1 52| 83 is squivalent to (S1 82) | S3.

A.2 Semantics

Programmable controller textual programming language semartics are defined in this Part by
appropriate natural language text, accompanying the production rules, which references the
descriptions provided in the appropriate clauses. Standard options available to the user and -
manufacturer are specified in these semantics.

In some cases it is more convenient to embed semantic information in an extended structure. In such
cases, this information is delimited by paired angle brackets, for example, <semantic information>.



IEC DIS 11313 =141 -

ANNEX B - Formal specifications of language elements (normative)
B.0 Programming model
The contents of this annex are normative in the sense that a compiler which is capabie of recognizing
all the syntax in this annex shali be capable of recognizing the syntax of any textual language
impiementation complying with this standard.
PROD.UCHON RULES:

library_element_name ;= data_fypse_name | function_name | hanction_block_type_name
| program_type_name | resource_type_name | configuration_name

library_element_declaration :'= data_type_declaration | function_deciaration
| function_block_deciaration | program_deciaration | configuration_declaration

SEMANTICS: These productions reflect the basic programming model defined in 1.4.3, where
daclarations are the basic mechanism for the production of named lbrary elements. The syntax and
semantics of the non-terminal symbols given above are detined in the subclauses listed below.

Non-terminal symbol Syntax Semantics
data_type_name B13 23
data_type_declaration
function_name B.1.5.1 2.5.1
function_declaration
function_biock_type_name B.152 252
function_block_deciaration
program_type_name B.1.53 253

program_declaration

resource_type_name _
configuration_name B1.7 27
configuration_declaration




- 142 - ECDIS 11312

8.1 Common slements
B.1.1 Letters, digits and identifiers

PRODUCTION RULES:
etter = ‘A iBl<.>|Z]|2|D|<.>]|T
digi ="0{"1"|Z]F|4|T|e|T|"|T
octal_digh =="0'{'1" |21 {41567
hex_digit = digit | 'A' | B'|'C|'D'|'E'|'F|a cEd‘% N
identifier ;= (letter | {_" (letter | dight})} {[_] (‘et!ef | digit)}
SEMANTICS:
The ellipsis <...> here indicates the IS0 646 sequence of 26 letters.

Characters from national character sets can be used; however, international portability of the printed
representation of programs cannot be guaranteed in this case.

The case of letters shall be significant in terminal symbols, but not in other syntactic elements.

8.1.2 Constants

PRODUCTION RULE:
constant ::= numeric_literal | character_string | time_literal

SEMANTICS:
The external representations of data described in 2.2 are designated as "constants” in this annex.

B.1.2.1 Numeric literais

PRODUCTION RULES:
numeric_|iteral ::= integer_literal | real_literai
integer_literal ::= signed_integer | binary_integer | octal_integer | hex_integer
signed_integer = ['+' -] integer
integer = digit {[_"] digit}
binary_integer ;= '2# bit {['_1] bit}
bit ::="1"| 'O’
octal_integer = ‘8#" octal_digit {1 octal_digit}
hex_integer = "16#" hex_digit {_7 hex_digit}

. real_literal ;= signed_integer ' integer [exponent]
exponent = ('E' | 'e") [+']-] imeger

SEMANTICS: See 2.2.1.



[EC DIS 1131-3 - 143 -

‘B.1.2.2 Character strings

PRODUCTION RULES:
character_string ;= "' * {character_representation} "' *
character_representation ::= <any printable character except '$'> | '$' hex_digit hex_digit | '$$
=8 'L SN ['$P 'SR I'ST '8 {'$n'|'$p' | '$7 | '

SEMANTICS: See 2.2.2.

B.1.2.2 Time literais

PRODUCTION RULE:
time_literal ;= duration | time_of_day | date | date_and_time

SEMANTICS: Bes 2.2.3.

B.1.2.3.1 Durstion

PRODUCTION RULES:
duration = (T | 't | TIME' | time") ‘# [-] interval
interval ;= days | hours | minutes | seconds | miliiseconds
days = fixed_point ('d" | ‘D) | integer ('d"| 'D") ['.] hours
fixed_point = integer [ *." integer]
hours ::= fixed_point ('h' | 'H') | iteger (R’ | 'H’) [_] minutes
minutes = fixed_point {'m' | 'M") | integer {'m' | 'M'} [_] seconds
seconds ;= fixed_point ('s' | 'S") | imeger ('s' | 'S} [_] milliseconds
milliseconds ::= fixed _point {'ms' | 'MS")

SEMANTICS: See 2.2.3.1.

NOTE - The semantics of 2.2.3.1 impose additional constraints on the allowable vakies
- of hours, minutes, seconds, and milliseconds.



« 144 = - ECDIS 1131-3

B.1.2.3.2 Time of day and date

PRODUCTION RULES:

time_of_day = (TIME_OF_DAY" | time_of_day' | TOD' | tod’) '¥ daytime
daytime .= day_hour "’ day_minute "' day_second

day_hour == integer

day_minute = integer

day_second ©= fixed_point

date := (DATE | ‘date’ | 'D' | 'd") ‘¥ date_literal

date_lteral = year "' month " day

year ;= integer

month = imeger

day .= integer

date_and_time == { DATE_AND_TIME' | 'date_and_time' | 'DT" | 'dt)'# date_literal -’ daytime

SEMANTICS: See 2.2.3.2.

NOTE - The semantics of 2.2.3.2 impose additional constraints on the aliowable values of
day_hour, day_minute, day_second, year, month, and day.

B.1.3 Data types

PRODUCTION RULES:
data_type_name ::= Non_generic_type_name | genenc_type_name
non_generic_type_name = elementary_type_name | derived_type_name

SEMANTICS: See 2.3.

B.1.3.1 Elementary data types

PRODUCTION RULES:

elementary_type_name ;= numeric_type_name | date_type_name | bit_string_type_name
|'STRING' | TIME'

numenc_type_name ::= integer_type_name | real_type_name
integer_type_name = signed_integer_type_name | unsigned_integer_type_name
signed_integer_type_name = 'SINT' [ 'INT | 'DINT" | ‘LINT
unsigned_integer_type_name := "USINT | 'UINT' | 'UDINT | 'ULINT
real_type_name := 'REAL' | 'LREAL'

date_typs_name = 'DATE' | TIME_OF_DAY'| TOD" | ‘DATE_AND_TIME' | 'DT
bit_string type_name := ‘BOOL' | 'BYTE' [ ' WORD' | 'DWORD’ | LWORD'

SEMANTICS: See 2.3.1.



iEC DIS 11313 =145 -

B.1.3.2 Generic data types

PRODUCTION RULE:
generic_type_name = ‘ANY" |'ANY_NUM' |'ANY_REAL' | 'ANY_INT | ‘ANY_BIT' | 'ANY_DATE'

SEMANTICS: See 2.3.2.
B.1.2.2 Derived data types

PRODUCTION RULES:
derived_type_name = single_slemeni_type_name | array_type_name | structure_type_name

single_element_type_name = simple_type_name | subrange_type_name
| enumerated_type_name ' '

simple_type_name .= identifier

subrange_type_name = identifier

enumerated_type_name := identifier

array_type_name ;= identifier

structure_type_name = identifier

data_type_declaration ::= TYPE' type_declaration ;' {type_declaration *"} 'END_TYPE'

type_declaration ;= single_element_type_declaration | array_type_declaration
| structure_type_declaration

single_element_type_declaration = simple_type_declaration | subrange_type_declaration
| enurnerated_type_declaration

simple_type_declaration ::= simple_type_name "’ simple_spec_init
simple_spec_init := simple_specification [.=' constant]
simple_specification ::= elementary_type_name | simple_type_name
subrange_type_declaration = subrange_type_name "’ subrange_spec_init
subrange_spec_init ;= subrange_specification "=’ signed_integer]
subrange_specification ;= integer_type_name ‘(' subrange’)’ | subrange_type_name
subrange ::= signed_integer '..' signed_integer
enumerated_type_declaration ::= enumerated_type_name "’ enumerated_spec_init
enumerated_spec_inil ::= enumerated_specification [':=’ enumerated_value]
enumerated_specification .= { ‘(' enumerated_value {', enumerated_vaiue} ')’ )
a | enumerated_type_name
enumerated_value ;= identifier
array_type_deciaration ;= amay_type_name " array_spec_init
array_spec_init ;= array_specification [»’ array_initialization]
array_specification ;= array_type_name
| "ARRAY" T subrange {',' subrange} T ‘OF non_generic_type_name
array_initialization ;= array_initial_elements {', array_initial_elements}
array_initial_selements ::= array_inttial_element | integer ‘(' array_initial_elermnent ')’
array_initial_element ::= constant | enumerated_vakie | structure_initialization | array_initialization
(continued on following page)



- 146 = [EC DIS 11313

{B.1.3.3 - Derived data types - continued)

structure_type_deciaration ;= structure_type_name ' structure_specification
structure_specification ::= structure_deciaration | intiakzed_structure
intialized_structure = structure_type_name [structure_initialization)
structure_dectaration == 'STRUCT structure_slement_declaration "'
{structure_element_declaration '} 'END_STRUCT

structure_element_deciaration ;= structure_element_name "
{sitrple_spec_init | subrange_spec_in# !mumadwspec init | array_spec_ini
| initiaiized_structura)

structure_element_name o= identifier
structure_initialization ;= '’ structure_element_initialization {',' structure_ elemem _initialization} Y’

structure_element_initialization = structure_element_name "='
{(constant | enumerated_vaiue | array_initialization | structure _intialization)

SEMANTICS: See 2.3.3.

B.1.4 Variables

PRODUCTION RULES:
variable ::= direct_variable | symbolic_variable
symbolic_variable ::= variable_name | muiti_element_variable
variable_name ::= identifier

SEMANTICS: See 2.4.1.

B.1.4.1 Directly represented variables

- PRODUCTION RULES:

direct_variable = %' location_prefix size_prefix integer {'." integer)
location_prefix == "1' | 'Q" | 'M'

size_prefix == NIL|'X' |'B" | W |'D' L

SEMANTICS: See 2.4.1.1.



iEC DIS 11313 =147 =

B.1.4.2 Multi-element variables

PRODUCTION RULES:
multi_slement_variable = array_variable | structured_variable
array_variable &= subscripted_variable subscript_iist
subscripted_variable = symbolic_variable
subscript_list = T subscript {',' subscript} 7'
subscript 1= direct_variable | variable_name | signed_integer
structured_variable ;= record_variable ' field_selector
record_variable = symbolic_variabie
field_selecior = identifier

SEMANTICS: See 2.4.1.2.

© B.1.4.3 Declaration and initialization

PRODUCTION RULES:
input_declarations = 'VAR_INPUT input_declaration ;' {inpui_declaration ;} ‘END_VAR'
input_declaration ::= var_init_dec! | edge_declaration
edge_declaration 1= vari_list ' ‘BOOL' {R_EDGE' | 'F_EDGE]
var_init_dec! ;= var1_init_dec! | array_var_init_decl | structured_var_init_dect | fo_name_decl
vari_init_decl == vari_list ' (simple_spec_init | subrange_ _init | enumerated_spec_init)
vari_list ;= variable_name {', variable_name}
array_var_init_decl ;= var1_list "’ array_spec_init
structured_var_init_dec! ;= var1_list "' initialized_structure
fo_name_dec! == fy_name_list ' function_block_type_name
fb_name_list .= fb_name {,' fb_name}
{b_name ::= identifier
output_deciarations = 'VAR_OUTPUT [RETAIN var_init_decl "} {var_init_dec! ;) "END_VAR'
_input,_o&ﬂpm_deciarations ‘= VAR_IN_OUT var_declaration ';’ {var_declaration '} 'END_VAR'

var_declaration ::= var!_declaration | array_var_deciaration | structured_var_declaration
| fo_name_deci

vart_declaration ::= vari_list "'
(simple_specification | subrange_specification | enumerated_specification)

array :var_declaration ::= vari_list ' array_specification
structured_var_declaration ::= var1_ist ' structure_type_name
(continued on following page)



. 148 - IEC DIS 11313

(B.1.4.3 Variable declaration and initialization - continued)

var_declarations := 'VAR' var_init_dec! ;' {var_in#_deci 'END_VAR'
retentive_var_declarations = 'VAR' 'RETAIN' var_init_decl "/ {var_ink_dec! "7} 'END_VAR'

located_var_declarations = "VAR' [CONSTANT] 'RETAINT
located_var_decl ', {located_var_decl "7} 'END_VAR'

iocated_var_dect = [variable_name] location '’ located _var_spec_init

extemnal_var_declarations = 'VAR_EXTERNAL' externai_declaration '/ {external_declaration ']} =
'END_VAR'

axternal_declaration = global_var_name "’ {simple_specification | subrange_specification
| enumerated_specification | array_spacification | structure_iype_name
| function_block_type_name} ;

global_var_name = identifier

global_var_declarations = VAR_GLOBAL' PCONSTANT][RETAINT
global_var_dedl ;' {global_var_decl "} 'END_VAR'

global_var_ded ;= global_var_spec " iocated_var_spec_init
global_var_spec = giobal_var_list | [global_var_name] location

located_var_spec_init = simple_spec_intt | subrange_spec_init | enumerated_spec_init
| array_spec_init | intialized_structure

location 1= 'AT" direct_variable
global_var_list = global_var_name {',’ global_var_name}
SEMANTICS: See 2.4.2. The non-terminal “function_block_type_name" is defined inB.1.5.2.

P



ECDIS 11313 - 149 -

B.1.5 Program organization units
B.1.5.1 Functions

PRODUCTION RULES:
function_name == standard_function_name | derived_function_name
standarg_function name = <as defined in 2.5.1.5>
derived_function_name ::« identifier

function_declaration :'=
"FUNCTION: derived_function_name ;' (elementary_type_name | derived_type_name)
input_declarations
[VAR' function_var_decls 'END_VAR'
function_body
'END_FUNCTION'

function_var_decis 1= function_var_dec! ;' {function_var_dec! '}
function_var_dec! = var{_deciaration | array_var_declaration | structured_var_deciaration
function_body ::= ladder_diagram | function_block_diagram | instruction_list | statement_list
SEMANTICS: See 2.5.1.
NOTE 1 - This syntax does not reflect the fact that function block references and invocations

are not allowed in function bodies.

NOTE 2 - Ladder diagrams and function block diagrams are graphically represented as defined
in Clause 4. The non-terminals instruction_list and staternent_list are defined in
8.2.1 and B.3.2, respectively. .



-1850 - IEC DIS 1131-3

B.1.5.2 Function blocks

PRODUCTION RULES: v
function_biock_type_name ;= standard_function_block_name | derived_function_block_name
standard_function_block_name = <as defined in 2.5.2.3>
derived_function_block_name = identifier
function_block_deciaration =

FUNCTION_BLOCK' derived_function_block_name -
{fb_ic_var_deciarations}
{other_var_declarations}

function_block_body
"END_FUNCTION_BLOCK'

fb_io_var_declarations = input_declarations | cutput_deciarations | input_output_declarations

other_var_declarations ::= external_var_declarations | var_declarations
| retentive_var_declarations

function_block_body ;= sequential_function_chart | ladder_diagram Efunchon biock_diagram
| instruction_list | statement_list

SEMANTICS: See 2.5.2.

NOTE 1 - Ladder diagrams and function block diagrams are graphically represented as defined
in clause 4.

NOTE 2 - The non-terminals sequential_function_chart, instruction_list, and statement_list are
defined in B.1.6, B.2, and B.3.2, respectively.

B.1.5.3 Programs

PRODUCTION RULES:
program_type_name :: = identifier

program_declaration =
'PROGRAM' program_type_name
{{b_io_var_declarations}
. [other_var_declarations | located_var_dectarations}
{program_access_decls]
function_block_body
'END_PROGRAM'

program_access_decis ;=
"VAR_ACCESS' program_access_d
{program_access_dec! ;' }
'END_VAR'

program_access_dec! = access_name "’ symbolic_variabie ' non _generic_type_name direction

SEMANTICS: See 2.53.



[EC DIS 1131-3 - 161 -

B.1.6 Sequential function chart elements

PRODUCTION RULES:
sequential_function_char !'= sfc_network {sfc_network}
stc_network ;= inttial_step {step | transition | action}
initial_step := 'INITIAL_STEP' step_name ' {action_association ‘END_STEF
step = 'STEF step_name "' {action_association '} 'END_STEP
step_name = identifier
action_association 1= action_name (' action_guaiifier [, feadback_name} )’
action_name ;= identifier .
action_qualifier == ‘N' | 'R’ | 'S [ 'F'| timed_gqualifier *,’ action_time
timed_qualifier == "L'|'D’ | 'SD' | 'DS" | 'SU '
action_time 1= duration | variable_name
feedback_name ;.= variable_name _

transition = TRANSITION' [transition_name] ‘FROM' steps 'TO' steps transition_condition
‘END_TRANSITION'

transition_name ;= identifier
steps = step_name | ‘(' step_name ' step_name {',' step_name} )’
transition_condition 1= "' instruction_tist | =" expression ' | " (fod_network | rung)

action = 'ACTION' action_name "
tunction_block_body
'END_ACTION'

SEMANTICS: See 2.6. The use of function block diagram networks and ladder diagram rungs,
denoted by the non-terminais fod_network and rung, respectively, for the expression of transition
conditions shall be as defined in 2.6.3.

NOTE - The non-erminals instruction_list and expression are defined in B.2.1 and B.3.1,
respectively.



- 152« - ECDIS 11313

B.1.7 Configuration siements

PRODUCTION RULES:
configuration_name ::= identifier
resource_type_name ;= identifier

configuration_declaration ::= "CONFIGURATION configuration_name
{globai_var_declarations}
resource_declaration
{resource_deciaraton)
{access_declarations]
‘END_CONFIGURATION'

resource_declaration ::= "RESOURCE' resource_name 'ON' resource_fype_name
fglobal_var_deciarations]
{task_configuration ';'}
program_configuration '’
{program_configuration "'}
"END_RESOURCE'

resource_name o= identifier
access_declarations = 'VAR_ACCESS' access_declaration '}’ {access_declaration '} 'END_VAR'
access_dectaration = access_name "' access_path "' non _generic_type_name [direction]

access_path = [resource_name "'} direct_variable | resource_name " program_io_reference
| globai_var_reference

giobal_var_reference :» [resource_name ‘] global_var_name [ structure_element_name]
access_name ;= identifier

program_io_reference = program_ input_reference | program_| outpm_reference
program_output_reference = program_| name '’ symbolic_variable
program_input_reference = program_name '." symbolic_variable

program_name ;= identifier

direction = 'READ_WRITE' | 'READ_ONLY'

task_configuration = TASK' task_name task_initialization

task_ name = dentifier

task_| mmainzatson = (' [SINGLE' ":=' data_source '] [INTERVAL' "= =" data_source ']
‘PRIORITY" "»' integer ')’

data_source ;= constant | global_var_reference | program_output_reference | direct_variable

program_configuration :i= '‘PROGRAM’ program_name [WITH' task_name] ' program_type_name
[ prog_cont_elements ‘)]

prog_conf_elements = prog_cont_element (' prog_con{_element}

prog_cont_element ::= fo_task | prog_cnxn

fo_task ;= fo_name 'WITH' task_name

prog_cnxn ;= symbolic_variable "= ' prog_data_source | symbolic_variable '=>' data_sink
prog_data_source ;= constant | globai_var_ reference | direct_! variable

data_sink ::= global_var_reference | direct_variable

SEMANTICS: See2.7.



[EC DIS 1131-3 ' - 153 -

B.2 Language IL {instruction List)

B.2.1 instructions and operands
PRODUCTION RULES:
instruction_fist = instruction {instruction}
instruction ;= [[label '] (ii_operation | §_fo_call)] EOL
label ;= identifier
_operation = i|_operator [ ' §_operand_list]
i_operand_list 1= il_operand [, ii_operand]
il_cperand .= [identifier =] (constant | variabie}
il_fo_call ::== CAL [CTNT fo_name ‘(" #i_operand_list )’
SEMANTICS: See 3.2

- B.2.2 Operators
PRODUCTION RULES:
il_operator = (LD'|'ST}[IN}{'S|'R

| (AND"|'OR' | 'XOR’) [N{{(]
{ (ADD' {'SUB' | 'MUL' | 'DIVY [{]
| (GT|'GE'|'EQ"| 'NE'|'LT ['LE} (]
| (JMP"{ ‘RET) ['C" [N]
| 'S1'|'R1"{'CLK' | ‘CU' |'CD'|'PV" |'IN'|'PT |}
| function_name

SEMANTICS: See 3.2.



- 184 - IEC DIS 11313

B.3 Language ST (Structured Text)

B.3.1 Expressions

PRODUCTION RULES:
expression ;= xor_expression {'OR’ xor_expression}
xor_sxpression = and_expression {XOR' and_expression}
and_expression = comparison {('&' | ‘AND"} comparison}
comparison = add_expression {comparison_operator add_expression}
comparison_operator 1= "<' | ‘> | 'ex’ [ >m' | ‘=’ | '3’
add_expression ;= term {add_operator term}
add_operator ;= +' | ™
term = power_expression {multiply_operator power_expression}
muttiply_operator =" | 7 [ MOD’
pOWer_expression 1= Unary_expression {™ unary_expression)
unary_expression = [unary_operator] primary_expression
unary_operator o= "' | 'NOT'

primary_expression ;= constant | variable | (' expression 'y’
| function_name (' [st_function_inputs] '

st_function_inputs 1= st_function_input { "/ st_function_input}
st_function_input 1= [variable_name ".="] expression

SEMANTICS: These definitions have been arranged to show a top-down derivation of expression
structure. The precedence of operations is then implied by a "bottom-up” reading of the definitions of
the various kinds of expressions. Further discussion of the semantics of these definttions is given in
3.3.1.

B.3.2 Statements
PRODUCTION RULE:
statement_list == statement ;' {statement '}

statement ;= NIL | assignment_statement | subprogram_control_statement | selection_statement
| Reration_staternent

SEMANTICS: See 3.3.2.

B.3.2.1 Assignment statements

PRODUCTION RULE:

\  assignment_statement ::= variable "=’ expression
SEMANTICS: See 3.3.2.1.



IEC DIS 1131-3 ' - 155 -

B.3.2.2 Subprogram control statements

PRODUCTION RULES:
subprogram_control_statement := fb_invocation | 'RETURN"
fb_invocation = fb_name ‘(' [fo_input_assignment {'/ fo_input_assignment}] ')’
fb_input_assignment ;= variable_name ‘=" expression

SEMANTICS: Ses 3.3.22

B.3.2.3 Selection gistements -
PRODUCTION RULES:
selection_staternent = i{_statement | case_statement

if_statement = IF expression THEN' statement_list
{'ELSIF expression THEN' statement_list}
[ELSE' staterment_list]
"END_IF

case_statement == 'CASE’ expression 'OF
case_element {case_element)
[ELSE' statement_list]
'END_CASE'

case_element ;1= case_list "' statement_list

case_list ::= case_list_alement { case_list_element}

case _list_elemes: .= subrange | sighed_integer
SEMANTICS: See 3.3.2.3.

B.3.2.4 iteration statements

PRODUCTION RULES:
iteration_statement 1= for_statement | while_: statement { repeat_statement | exit_statement
for_statement ::= "FOR’ control_variable "=’ for_list ‘DO’ statement_list 'END_FOR'
controi_variable ::= identifier
for_list == expression TO' expression [BY' expression]

« while_statement ::= 'WHILE' expression 'DO" statement_list 'END_WHILE'
repeat_statement ;= 'REPEAT statement_list ‘UNTIL' expression 'END_REPEAT
exit_staternent ::= ‘EXIT '

SEMANTICS: See 3.3.2.4.



- 156 » ECDIS1131-3

ANNEX C - Delimiters and Keywords
(normative)

The usages of delimiters and keywords in IEC 1131-3 is summarized in tables C.1 and C.2. Nationai
standards organizations can publish tables of translations for the textual portions of the delimiters
listed in table C.1 and the keywords listed in table C.2.

Table C.1 - Deiimiers

Delimiters Clause . Usage
Spacs 2.1.4 As specified in 2.1.4
(* 215 Begin comment
=) - End comment
+ 221 Leading sign of decimal literal
3.3.1 Addition operator
- 2.2.1 Leading sign of decimal literal
2.2.3.2 Year-month-day separator
3.3.1 Subtraction, negation operator
4.1.1 Horizontal fine
# 2241 Based number separator
223 Time literal separator
2.2.1 Integer/fraction separator
2.4.11 Hierarchical address separator
2412 Structure element separator
2521 Function block structure separator
e Or E 2.2.1 Real exponent deiimiter
' 222 Start and end of character string
$ 2.2.2 Starnt of special character in strings

2.2.3 - Time literal defimiters, including:
t#, T4, 4, D, h, H, m, M, s, 5, ms, MS
DATE#, date#, D#, d#, TIME_OF_DAY#, time of dav#

TOD#, tod#, DATE_AND TIME#, date_and_time#, DT#, dt#

2232 Time of day separator
2.3.3.1 Type name/specification separator
24.2 ' Variabletype separator
262 Step name terminator
27 RESOURCE namentype separator
2.7 PROGRAM nameftype separator
27 Access name/pathitype separator
3.21 Instruction label terminator
412 Network label terminator

{continued on foliowing page)




{EC DIS 1131-3 - 157 -
Tabie C.1 - Delimiters (continued)
Delimiters Clause Usage
1= 2.3.341 Initiakization operator
2.7.1 input connection operator
3.3.21 Assignrment operator
() 2.3.3.1 Enumeration list delimiters
2.3.34 Subrange delimiters
24.1.2 Amay subscript deliniters
242  String length delimiters
242 Multiple inttialization
3.22 instruction List moditier/operator
3.3.1 Function arguments
3.3.4 Subexpression hierarchy
3.3.2.2 Function block input list delimiters
v 2.3.3.1 Enumeration list separator
2.3.3.2 tnitial value separator
2.4.1 Array subscript separator
242 Declared variable separator
2.5.2.1 Function block initial value separator
2.5.2.1 Function block input list separator
3.21 Operand list separator
3.341 Function argument list separator
3.3.23 CASE value list separator
2.3.31 Type deciaration separator
3.3 Statement separator
2.3.3.1 Subrange separator
3.3.23 CASE range separator
% 2.4.11 Direct representation prefix
> 2741 Qutput connection operator
3.3.1 - Infix operators, including:
*=, NOT, *, /, MOD, +, = <, >, <= >m, =, <>, &, AND, XOR, OR
i or! 41.1 Vertical lines
(NOTE - "t" is only allowed when "|" does not exist in &
4 national character set)




- 158 - IEC DIS 11313

Table C.2 - Keywords

Keywords Clause
Action qualifiers 2644
ACTION...END_ACTION 2.6.4.1
. ARBAY..OF 2.3.3.1
AT ) 2.4.3
CASE...OF...ELSE...END_CASE ' 3323
CONFIGURATION...END_CONFIGURATION 271
CONSTANT 243
Data type names o 2.3
EN, ENO 2512
EXIT 3.3.24
FALSE 2.2.1
F_EDGE ) 2522
FOR...TO...BY...DO...END_FOR 3.3.24
FUNCTION...END_FUNCTION 25.13
Function names 251
FUNCTION_BLOCK...END_FUNCTION_BLOCK 2522
Function Block names 252
IF...THEN...ELSIF...ELSE...END_IF 3.3.23
INITIAL_STEP..END_STEP 262
PRCGRAM..WITH... .2.7.1
PROGRAM...END_PROGRAM ‘ -2.5.3

- {continued on foilowing page)



IEC DIS 1131-3 - 189 -

Table C.2 - Keywords (continued)
Keywords Clause
R_EDGE 2522
READ_ONLY, READ_WRITE 2.7.1
REPEAT...UNTIL..END _REPEAT 3324
RESOURCE...ON...END_RESOURCE | 271
RETAIN 243
RETURN 3.3.22
STEP..END_STEP 262
STRUCT...END_STRUCT 2.3.31
TASK 272
Textual operators (L language) 322
{ST language) 3.3 -
TRANSITION...FROM...TO...END_TRANSITION 2.6.3
TRUE 2.2.1
TYPE..END_TYPE 2.3.3.1
VAR...END_VAR 242
VAR_INPUT...END_VAR
VAR_QUTPUT...END_VAR
VAR_IN_OUT..END_VAR
VAR_EXTERNAL.. END_VAR
VAR_ACCESS...END_VAR . 2741
VAR_GLOBAL..END_VAR 2741
WHILE...DO..END_WHILE 3.3.24
* WITH 2.7.1




- 160 - IEC DIS 1131-3

ANNEX D - impiementatiot-dependent paramaeters
(normative)

The implementation dependent parameters defined in IEC 1131-3, and the primary reference dause
for each, are listed in table D.1.

Table D.1 - Implementation-dependent parameters

Clause Parametsrs ,
1.5.1 Error handling procadures )
2.1.1 National characters used
# or “pounds Sterling” sign
$ or “currency” sign
“feori
212 Maximum length of identifiers
215 : Maximum comment length
. 2231 Range of values of duration
2.3.1 Range of values for variables of type TIME-

Precision of representation of seconds in types TIME_OF_DAY and
DATE_AND_TIME

2.3.3 Maximum number of array subscripts
Maxirmum amray size
Maximurn number of structure elements
Maximum structure size
Maximum number of variables per declaration

2.3.31 Maximum number of enumerated vaiues
2.3.3.2 Default maximum length of STRING variables
Maximum allowed length of STRING variables
2.4.1.1 ) Maximum number of hierarchical levels
Logical or physical mapping

2412 Maximum number of subscripts
- Maximum range of subscript vaiues
Maximum number of levels of structures

2492 Intialization of system inputs
243 Maximum number of variables per declaration
25 Information to determine execution times of program organization units
2511 Method of function representation (names or symbols)
2513 Maximum number of function specifications
2515 Maximum number of inputs of extensible functions
2.5.1.51 Effects of type conversions on accuracy

(continued on following page)



IEC DIS 1131-3 - §6% -
Table D.1 - Implementation-dependent parameters (continued)
Clause Parameters
25152 Accuracy of functions of one variable
implementation of arithmetic functions
252 Maximum number of function block specifications and instantiations
25233 PVmin, PVmax of coumers
25238 Numbet/length limitations on SEND inputs and ACY outputs
253 Program size limitations
26 Timing and portability effects of axecution comtrol elements
262 Precision of step elapsed fime
Maximum number of steps per SFC
263 Maximum number of transitions per SFC and per step
264 Action control mechanism
Maximum number of actions per step
285 Graphic indication of step state
Transition clearing time
Maximum width of diverge/converge constructs
271 Contents of RESOURCE libraries
2.7.2 Maximum number of tasks
Task interval resoiution
Pre-emptive or non-pre-emplive scheduling
3.3.1 Maximum length of expressions
Partial evaluation of Boolean expressions
332 Maximum length of statemerts
3.3.23 Maximum number of CASE selections
3324 Value of controi variable upon termination of FOR loop
4.1.1 Graphic/semigraphic representation
Restrictions on network topology
b 413 Evaluation order of feedback loops




The error conditions defined in IEC 1131-3, and the primary reference ciause for each, are isted in
table E.1. These errors may be detected during preparation
execution of the program. The manufacturer shall specify the

. 162~ {EC DIS 11313

ANNEX E - Error Conditions
{normative)

the provisions of subclause 1.5.1 of this Part.

Tabie E.1 - Ervor condliions

Clause Error conditions
2.3.31 Yalue of a variable exceeds the specified subrange
242 Length of initialization fist does not match number of array entrias
2.5.1 improper use of directly represented or exiernal variables in functions
25151 Type conversion ermors
25152 Numerical result exceeds range for data type
Division by zero
25154 Mixed input data types to a selection function
i Selector (K) out of range for MUX function
2.5.1.55 Invalid character position specified
Result exceeds maximum string length
25158 Result exceeds range for data type
26.2 Zero or more than one initial steps in SFC network
User program attempts 1o modity step state or time
2.8.25 Simuftaneously frue, non-prioritized transitions in a selection divergence
263 Side effects in evaluation of transition condition
2645 Action control contention error
26.5 *Unsafe" or "unreachable” SFC
271 Data type confiict in VAR_ACCESS
2.7.2 Tasks require too many processor resources
Execution deadline not met
Other task scheduling conflicts
322 Numerical result exceeds range for data type
3.3.1 Division by zero
Invalid data type for operation
3.3.21 Retum from function without value assigned
3324 Hteration fails o terminate
411 Same identifier used as connector label and element name
414 Un-inttialized feedback variable
415 As for2.5.1.52

of the program for execution or during
disposition of these efrors according to




IEC DIS 1131-3 =163 -

ANNEX F - Examples
(informative)
F.1 Function WEIGH
Example function WEIGH provides the functions of BCD-to-binary conversion of a gross-weight input
from a scale, the binary integer subtraction of a tare weight which has been previously converted and
stored in the memory of the programmable controller, and the conversion of the resulting net weight

back to BCD form, e.g., for an output display. The “EN" input is used io mdncate that the scale is
raady to perform the weighing operation.

The 'ENO“ output indicates that an appropriate command exists (e.g., from an operator pushbutton},
the scale is in proper condition for the weight to be read, and each function has 2 correct resuft.

A textual form of the deciaration of thig function is:

FUNCTION WEIGH : WORD {(* BCD encoded *}
VAR _INPUT (* "EN" input is used to indicate "scale ready" *)
weigh command : BOOL:
gross_weight : WORD ; (* BCD enceded *)
" tare_weight : INT ;
END_VAR

{* Function Body *)

END_FUNCTION {* Implicit "ENO©" ™)

The body of function WEIGH in the IL language is:

D weigh_command
JMPC WEIGH_NOW
ST ENO {* No weighing, 0 to "ENO™ ")
RET
WEIGH_NOW: LD gross_weight
BCD_TO_INT
sus tare_weight
INT_TO_BCD (* Retumn evaluated weight *)

The body of tunction WEIGH in the ST language is:

IF weigh_command THEN
WEIGH := INT_TO BCD (BCD_TO_INT (gross_weight} - tare weight);

END_IF ;




-84 - . ECDIS 1131-3

An equivalent graphical declaration of function WEIGH is:

BOQL--- | EN ENC|---BOOL
BOOL---}{weigh command net_weight{---WORD
WORD~-~~{gross welght i
INT--=~|tare_weight f

! o o e e + e + {
f i BCD_ { dmm—mee- + PoIwT_ {
| welgh command { TO_INT | | SUB | | TO_BCD | ENC i
o | jmm——— [EN  ENO|--I{EN ENO|-==|EN ENO|[===={ j=—m=== +
{ { I ! i 1 !
| gross_weight—-| [==1 fom=i [~-net weight |
[ h e —————— + ] fmmm—————— + i
| tare_weight--w===ooeeeom—— H I }
t tom + I
The function body in the FBD language is:

Fmmm———— + fommm e +

| BCD_ | 4===m--- + 1 INT_ |

[ TO_INT | i SUB | { TO_BCD |
weigh command~-—-|EN ENQO{~-~{EN ENO|---}EN ENC | ~==ENQ
gross_welght-===| === fomemem | |--net_weight

tmm—————— + ! I tmmmm e — +
tare weight----r——ro—rerwwowa= i ]

Fumam——— +

F.2 Function biock CMD_MONITOR

Example function block CMD_MONITOR illustrates the control of an operative unit which is capabie of -
responding to a Boolean command (the CMD output) and retumning a Boolean feedback signal (the
FDBK input) indicating successtul completion of the commanded action. The function block provides
for manual control via the MAN_CMD input, or automated comrol via the AUTO_CMD input,
depending on the state of the AUTO_MODE input (0 or 1 respectively). Verification of the MAN_CMD
input is provided via the MAN_CMD_CHK input, which must be 0 in order to enable the MAN_CMD

input.
if confirmation of command completion is not received on the FDBK input within a predetermined time
specified by the T_CMD_MAX input, the command is cancelled and an alarm condition is signalled via

the ALRM output. The alarm condition may be cancelled by the ACK (acknowledge) input, enabling
further operation of the command cycle.



IEC DIS 1131-3 -165 .

A textual form of the declaration of function block CMD_MONITOR is:

FUNCTION_BLOCK CMD MONITCR

VAR INPUT AUTO_CMD : BOOL ; {* Automated command *)
AUTO_MODE : BOOL :; {* AUTO_CMD enable ¥}
MAN CMD : BOOL : (* Manual Command *}
MAN CMD CHK : BOOL ; (* Negated MAN CMD to debounce *)
T CMD HMAX : TIME ; (* Max time from CMD to FDBK *)
FDBK : BOOQL ; {* Confirmstion of CMD completion
by operative unit =)
RCK : BOOL ; {* BRcknowledge/cancel ALRM *}

END_VAR
VAR QUTPUT CMD : BOOL ; {* Command to operative unit *}
ALRM : BOOL ; (* T_CMD_MAX explired without FDBK *)
END_VAR
VAR CMD TMR : TON ; {* OMD-to-FDBK timer *)
' ALRM FF : SR ; (* Note over~riding "S8" input: *}
END_VAR (* Command must be cancelled before

"ACK" can cancel alarm *)
(* Function Block Body *}
END_FUNCTION_BLOCK

An equivalent graphical decfaration is:

| CMD_MONITOR |
BOOL--~|AUTO_CMD  CMD|---BOOL
BOOL---|AUTO_MODE ALRM|--~BOOL
BOOL-=-~ |[MAN_CMD |
BOOL--- [MAN_CMD_CHK
TIME---|T_CMD_MAX
BOOL--- {FDBK
BOCL--- | ACK

-

The body of function biock CMD_MONITOR in the ST language is:

CMD := AUTO_CMD & AUTO_MODE
OR MAN CMD & NOT MAN CMD _CHK & NOT AUTO_MODE ;

CMD_TMR (IN := CMD, PT := T_CMD_MAX):

ALRM FF (S1 := CMD_TMR.Q & NOT FDBK, R := ACK);

ALRM := ALRM _FF.Q1;:

i



<168 -

EC DIS 1131-3

The body of function biock CMD_MONITOR in the IL language is:
LD T_CMD_MAX |

LD AUTO_CMD
AND AUTO_MODE
OR( MAN_CMD
ANDN AUTC_MODE
ANDN  MAN_CMD_CHK

g

ST CMD_TMR.PT {* Store an input to the TON FB *)

8T CMD

IN CMD_TMR {* invoke the TON FB *}

LD CMD_TMR.OQ

ANDN FDBK

8T ALRM_FF.51 {* Store an input to the SH FB 7)
iD ACK

R ALRM_FF {* Invoke the SR FB )

LD ALRM_FF.Q1

ST ALRM

The body of function block CMD_MONITOR inthe LD language is:

! I
| AUTO_MODE AUTO_CMD oM |
tmm] | mm—————- | fmmmmmm dmmm | )=t
| ; |
| AUTO_MODE MAN_CMD MAN_CMD_CHECK |

x
tum |/ jommmee | |-—mmm- [/]=mmmm e ms + i
i l
| ACK ALRM |
e I D (R) ===+
! CMD_TMR !
1 +ommm + 1
| CMD | TON | FDBK ALRM |
e B IIN  Qf===n=e | /] ==mmmmmmmes (S) ===+

| T_CMD_MAX--{PT ET| |
| Fowm—— + |
| |




EC DIS 1131-3 = 167 -

The body of function block CMD_MONITOR in the FBD language is:

et bt
AUTO_CMD=-=mm== [§ | === | >m] |=mbummmmmmm e m——em e oo CHMD
AUTO_MODE-—+==| | +-={ 1 |
| =t | et |
i } |
I ! CMD TMR ALRM _FF
=018} } | demm—- -+ Fmm——— +
MAN_CMD~====== |-+ || TON | +=+ | SR |
MAN CMD CHK--0Of | gl N Qie=—=—= 1§ ====|81 QL!-=ALRM
+et % | 4==Ol | #==|R
T _CMD_MAX- o m e e o {PT BETI | 4=t | he=me—— +
e + g
FDBK = = o + |
ALK e o e +

"E.3 Function block FWD_REV_MON

Example function block FWD_REV_MON illustrates the control of an operative unit capable of two-
way positioning action, e.g., a motor-operated valve. Both automated and manual control modes are
possible, with alarm capabilities provided for each direction of mation, as described for function block
CMD_MONITOR above. In addition, contention between forward and reverse commands causes the
cancellation of both commands and signalling of an alarm condition. The Boolean OR ot all alarm
conditions is made available as a KLAXON output for operator signaling. _ L

A graphical declaration of this function block is:

e i i i e R + -
| FWD_REV_MON |

BOOL--~ | AUTO KLAXON | -—~BOOL

BOOL--- | ACK FWD_REV_ALRM|--~BOOL

BOOL--~ | AUTO_FWD FWD_CMD | --~BOOL

BOOL~=- | MAN_FWD FWD_ALRM|---BOOL

BOOL~--- | MAN_FWD_CHK |
TIME--- | T_FWD_MAX |
BOOL--- | FWD_FDBK |
. BOOL~~-- | AUTO_REV REV_CMD | --~BOOL
N BOOL--= |MAN_REV REV_ALRM | ~~=BOOL
BOOL~--~ | MAN_REV_CHK |
TIME-~~ | T_REV_MAX !
BOOL--~ | REV_FDBK |




- 168 - IEC DIS 11313

A textual form of the declaration of function block FWD_REV_MON is:

FUNCTION_BLOCK FWD_REV_MON

BOOL ; (* Enable automated commands *)
(t

(ﬁ

VAR_INPUT AUTO :
ACK : BOOL ;
AUTO FWD : BOOL ;
MAN FWD : BOOL ;
MAN FWD CHE :
T_FWD_MAX : TIME ;
FWD_FDBK : BOOL :

AUTO_REV : BOOL ;
MAN REV : BOOL :

MAN REV_CHK : BOOL ;
T REV_MAX : TIME ;
REV_FDBK : BOOL : (>
END_VAR (*
VAR_OUTPUT KLAXON : BOOL :
FWD_REV_ALRM : BOOL; (*
FWD_CMD : BOOL ;- (=
FWD_ALRM : BOOL ; (*
REV_CMD : BOOL ; (*
REV_ALRM : BOOL (>
END_VAR
VAR FWD_MON : CMD_MONITOR;
REV_MON : CMD_MONITOR;:
FWD_REV_FF : SR ;
END_VAR

{w

BOOL ; {* Negated MAN FWD for debouncing *)

{* Maximum time from FWD_CMD to FWD_FDBK *)
{* Confirmaticn of FWD_CMD completion *)
{Ir
{* Automated reverse command *)

{* Manual reverse command *)
{* Negated MAN REV for debouncing *)
{* Maximum time from REV_CMD to REV_FDBK *)

(* Function Block body *)

END_FUNCTION_BLOCK

{* Forward/Reverse contention latch *)

Acknowledge/cancel all alarms *)
Automated forward command *)
Manual forward command *}

by operative unit *®) .

Confirmation of REV_CMD completion *)
by operative unit *j
{* Any alarm active *}
Forward/reverse command conflict *)
"Forward™ command to operative unit ¥)
T_FWD_MAX expired without FWD_FDBK *)
"Reverse” command to operative unit *)
T_REV_MAX expired without REV_FDBK *)

{* "Forward" command monitor *)
{* "Reverse" command monitor *)




iEC DIS 1131-3 =169 -

The body of function block FWD_REV_MON can be written in the ST language as:

(* gvaluate internal function blocks *)
FWD_MON {AUTO_MODE := AUTO,

ACK 1= ACK,
AUTO_CMD := AUTO FWD,
MAN CMD 1= MAN_FWD,

MAN CMD CHK := MAN_ FWD_CHK,
T _CMD_MAX  := T_FWD_MAX,

FDBK = FWD FDBK):
REV_MON (ABUTO_MODE  := AUTO,
ACK := ACK,
AUTO_CMD = AUTO_REV,
MAN_CMD 1= MAN REV,
MAN CMD CHK := MAN_REV_CHK,
T _CMD_MAX  :« T_REV_MAX,
FDBK 1= REV_FDBK):

FWD_REV_FF (S1 := FWD_MON.CMD & REV_MON.CMD, R := ACK):
{* Transfer data to outputs *)

FWD_REV_ALRM := FWD_REV_FF.Q1;

FWD_CMD := FWD_MON.CMD & NOT FWD_REV_ALRM;

FWD_ALRM := FWD_MON.ALRM;

REV CMD := REV_MON.CMD & NOT FWD_REV_ALRM;

REV_ALRM := REV_MON.ALRM;

KLAXON := FWD_ALRM OR REV_ALRM OR FWD_REV_ALRM;




=170 - IEC DIS 11313

The body of function block FWD_REV_MON in the IL language is:

ESEUESENEEREREBEREAERE86586

ST
CAL

s1
LD
ST

ANDN
ST

ST

ANDN
ST

ST
OR
OR
ST

AUTO

FWD_MON . AUTO_MODE
REV_MON.AUTO_MODE
ACK

FWD_MON.ACK
REV_MON . ACK
FWD_REV_FF.R
AUTO_FWD

FWD_MON , AUTC_CMD
MAN_FWD

FWD_MON . MAN_CMD
MAN FWD_CHK
FWD_MON.MAN CMD_CHK
T_FWD_MAX
FWD_MON,T_CMD_MAX
FWD_FDBK

FWD_MON . FDBK
FWD_MON

AUTO_REV
REV_MON.AUTC_CMD
MAN_REV

REV_MON .MAN_CMD
MAN REV_CHK
REV_MON.MAN_CMD_CHK
T_REV_MAX
REV_MON.T_CMD_MAX
REV_FDBK

REV_MON ., FDBK
REV_MON

FWD_MON ,CMD
REV_MON.CMD
FWD_REV_FF
FWD_REV_FF.Q
FWD_REV_ALRM
FWD_MON.CMD

'FWD_REV_ALRM

FWD_CMD
FWD_MON . ALRM
FWD_ALRM
REV_MON.CMD
FWD_REV_ALRM
REV_CMD
REV_MON.ALRM
REV_ALRM
FWD_ALRM
FWD_REV_ALRM
KLAXON

{* Load common inputs ¥*)

{* Load inputs to FWD_MON *)

{* Activate FWD_MON *}
{* Load inputs to REV_MON *)

(* Activate REV_MON =)
(* Check for contention *)

(* Latch contention condition *}

{(* Contention alarm *)
(* "Forward" command and alarm *)

(* "Reverse” command and alarm *)

(* OR all alarms *)




EC DIS 1131-3 471 -

The body of function block FWD_REV_MON in the FBD language is:

FWD_MON
tm—mn—— ——————— +
| CMD_MONITOR |
AUTO _FWDw======——- |AUTO_CMD CMD | »—+
AUTO-—=—=mmm=- 4====|AUTO_MODE ALRM|==|====—== FWD_ALRM
HMAN FWD-—=ww~= j==---|HMAN CMD oo
MAN FWD_CHKw={====|MAN_CMD_CHK o
FWD_FDBR === ==—=|FDBK ' [
ACK-=wo = {=+-=ACK I
T FWD MAX--e=|~|==|T_ CHMD_ MAX ] et
| | deememcareceneo~ 4+ dme] L |memeseecee————
I == !
P REV_MON T
| | e +
bl b CMD MONITOR | |
AUTO_REV~-----{-[-~{AUTC_CMD CHD | ==+
#=i==|AUTO_MODE ALRM|-==———=== REV_ALRM
MAN REV=-===mrw= | -= IMAN_CMD r
MAN REV_CHK--==|--|MAN_CMD CHK !
REV_FDBK==mmw=== | == |FDBK !
+-=|ACK 1
T _REV_MAX~--—====- {T_CMD_MAX !
o +
e
! FWD _REV _FF
! Fom +
! | SR |
m———— 1S1 Ql|-=t-==—m—=———om———— FWD_REV_ALRM
ACK--~[R o
o —— + omm—— +
o= >ml fmm——n- KLAXON
FWD_MON.ALRM=====rm-==c=== ==t !
REV_MON.ALRM=====m-====== | =
t - +
!
. | +m——t
#==0] & |————wm-— FWD_CMD
FWD MON.CMD==--e—em—————- === |
- i F——t
!
! tm——t
+==0} & [===ro=== REV_CMD
REV MON.CMD---—w===m—wwn- -] }
: ot




- {72 -

The body of function block FWD_REV_MON in the LD language is:

IEC DIS 11313

! FWD_MON l
| mmmm e —— - + |
| AUTO_FWD [ CMD_MONITOR | t
] e ————— |ARUTO_CMD CMD | |
I AUTO ! { FWD_ALRM |
o] (mmmm———— |AUTO MODE ALRM|-ewm=—=- { }=m=t
| MAN_FWD | s i
el B R [MAN CMD i |
| MAN_FWD_CHK | ! !
o= | rmm———— |MAN C¥D_CHK ! !
{ FWD_FDBK ! ! !
o] remmm——— |FDBK e 5
| ACK ! l 1
A B R | ACK | !
! ! ! !
| T _FWD_MAX---|T_CMD_MAX i !
i o e e + {
- | {
; REV_MON i
} Frmmmm e —————— + |
{ AUTO_REV | CMD_MONITOR | |
o | fmmmm————— | AUTO_CMD CMD | |
| AUTO | |  REV_ALRM |
o] |emmmm——— |AUTC_MODE ALRMj--===== ( )==--+
| MAN_REV i | !
o | mmmm————— |MAN_CMD | :
| MAN_REV_CHX 1| | |
e I {MAN CMD_CHK | |
| REV_FDBK | ! |
e B ey |FDBK | I
| ACK [ f !
el B IACK ! !
l l 1 !
i T_REV_MAX---|T_CMD_MAX J !
) Homm e ——————— + |
T |
i ACK FWD_REV_ALRM |
+mmmm- | |====meomoomemss—em——o—ee e (R} === +
! !
| FWD_MON.CMD  REV_MON.CMD FWD_REV_ALRM |
tmmm—= | j=m=—mmmmm——— I (S} =m=mmmm +
I |

{continued on following page)



EC DIS 11313 =173 -

(FWD_REV_MON function block body - LD language - continued)

| |

| FWD_MON.CMD  FWD_REV_ALRM FWD_CMD |

pm——— | |mw—————m——— /= ——— { }=m=omm +

| }

| REV_MON.CMD FWD_REV_ALRM REV.CD |

o e e | m—omemsnn—— j/ | { joem——— +

! i

i FWD REV ALRM KLAXON i

e | mmm——- T () mmmm—n +

I | !

{ FWD_ALRM | i

- o N e + f
{ | !

| REV_ALRM | |

Fmm——— | jmmm—— + |

- i f

F.4 Function block STACK_INT

This function block provides a stack of up 1o 128 integers. The usual stack operations of PUSH and
POP are provided by edge-triggered Boolean inputs. An overriding reset (R1) input is provided; the
maximum stack depth (N) is determined at the time of resetting. in addition to the top-of-stack data
(OUT), Boolean outputs are provided indicating stack empty and stack overflow states.

A textual form of the declaration of this function block is:

FUNCTION_BLOCK STACK_INT
VAR_INPUT PUSH, POP: BOOL R_EDGE; (* Basic stack operaticns *)

Rl : BOOL : {* Over-riding reset *)
IN : INT : (* Input to be pushed *)
N : INT (* Maximum depth after reset *)

END_VAR

VAR_OUTPUT EMPTY : BOOL :
QFLC : BOOL =
out : INT :=

: {* Stack empty *)
H {* Stack overflow *)
H {* Top of stack data *)

OO

<« END_VAR
VAR STK := ARRAY{0..127} OF INT; (* Internal stack *}

NI : INT :=128 {* Storage for N upon reset *)
PTR : INT := -1 ; (» Stack pointer *}
END VAR

{» Function Block body *)
END_FUNCTION_BLCCK




- 374 - EC DIS 11313

A graphical declaration of function block STACK_INT is:

frmm————— —

| STACK_INT |
BOOL--->PUSH EMPTY|---BOOL
BOOL-~~>POP  OFLO}~~=BOOL

BOOL--~{R1 OUT | --~INT

INT----{IN |

INT=m== N |
e e +

{* Internal variable declarations *}
VAR STK : ARRAYI{0..127] OF INT ; (* Internal Stack *}

NI : INT :=128 {* Storage for K upcn Reset ¥}
PTR : INT := =1 ; {* Stack Pointer =}
END VAR

The function biock body in the ST language is:

IF Rl THEN .
OFLO := 0; EMPTY := 1; PTR := =-1:
NI := LIMIT (MN:=},IN:=N,MX:=128); QUT := §;
ELSIF POP & NOT EMPTY THEN
QFLD := {; PTR := PTR-1; EMPTY := PTR < (;
IF EMPTY THEN QUT := 0:
ELSE QUT := STK[PTR]:
END_IF
ELSIF PUSH & NOT OFLO THEN
EMPTY := (; PTR := PTR+i; OFLO := (PTR = NI);
IF NOT QFLO THEN OUT := IN ; STK[PTR] := IN;
ELSE QUT := 0;
END_IF ;
END_IF ;

The function block body in the LD language is:

|
! Rl
4mwe| |===>>RESET

!
| POP EMPTY
4= | |==={/|===>>POP_STK

i
| PUSH OFLO
+=={ {=ww|/|===>>PUSH_STK

{continued on following page)



ECDIS 11313

=175 -

(STACK_INT fupction block body - LD language - continued)

RESET:

| tmm———— + F—————— + i
} | MOVE | { LIMIT | oFLC |
o e |EN  ENQ|~=r-—=—sscew- {EN  ENQ|==4==w{R) ===+
b O=-=] [==0UT 128--|MX ¢ 1 EMPTY |
P o=l we} |~-PTR New=|IN | A===(5) ==+
i e + 1= | MN R !
f ot e + !
POP_STK:

! e o + et +

i ! SUB } I LT |

e ity [EN  ENO|=www==-= |EN  ENO|  EMPTY

! BTR--| fe=PTR-=-| jomm—— {5 =—-
| 1--1 ] 0-=1 I

i o e + o +

l

f o +

! i SEL | OFLO
e |EN ENQ|--===rr==——=——- {R) ——==
i EMPTY i !

drm=| [mmmmmm—smm——— iG |=---0UT

| STK [PTR}==~~1INC |

! 0 -—=jIN1 !

i fmmm—— +
e —————— <RETURN>

PUSH_STK:

I !
{ fm——————— + e ———— + |
! i ADD ! | EQ i i
o —— {EN  ENO|=-==w=--- I[EN ENO! OFLO |
| PTR--| [w=PTR-~| === (S) ===+
| 1= ! NI--| ! I
| tmm———— + bmm——— - + f
! I
i tom———— + !
i OFLC ! MOVE | !
| [ mmmm——— JEN ENQ|===--m-====rrom—ceecoc—ennm= +
b IN=---| } ===STK{PTR] i
| ettt + I
| |
i tomm————— + !
! | SEL | EMPTY i
tmmm - ———— |[EN ENQ|»--=--—»r==mrm——c—was {(R) =———+
I OFLO ! I i
t===]| |mm————- IG | ==-0UT |
; IN-=--|INO ! !
] 0 --<|IN1 f |
i tormm——e- + !




- 176 -

The body of function block STACK_INT in the IL. language is:

IEC DIS 1131-3

RESET:

POP_STK:

PUSH_STK:

ZRO_OUT:
SET_OUT:

LD
JMPC
LD
ANDN
JMPC
LD
ANDN

- JMPC

RET
LD
ST
LD
5T
LD
ST
CAL
ST
JMP
LD
ST
LD
SuB
ST
LT
ST
JMPC
LD
JMP
LD
ST
LD
ADD
ST
EQ
ST
JMPC
LD
ST
JMP
LD
ST

R1 (* Dispatch on operations *)
RESET
POP
EMPTY
POP_STK
PUSH
OFLO
PUSH_STK

{* Don pop empty stack °)

{* Dont push overfiowed stack °)

{* Return if no operations active }
0 {* Stack reset operations “}
OFLO
1
EMPTY
-1
PTR
LIMIT(MN:=1 IN:=NMX:=128)
NI
ZRO_OUT
0
OFLO
PTR
1
PTR
0 (* Empty when PTR <0 7)
EMPTY
ZRC_OUT
STK[PTR]
SET_QUT
0
EMPTY
PTR
1
PTR
NI (* Overflow when PTR = NI *)
OFLO
ZRO_OUT
IN
STK[PTR]
SET_QUT
0 (* OUT=0 for EMPTY or CFLO *)
ouTt

(* Popped stack is not overflowing )

{* Pushed stack is not empty )

(* Push IN onto STK *)




EC DS 11313 « 177 -

The body of function block STACK_INT in the FBD language is:

R1--+-->>RESET
| +-+
fremmm————————————————— m===0| & | ~=<RETURN>
| 4% 4memecccemssemee—————— o1 |
+==0l&t | +--01 i
POP===== | je=t==>>POP_STK } ot
EMPTY-~GI | | .
ot e ——— 016 | ==4wed>>PUSH STK
RImmmo o e e e ol |
PUSH-~wmwommm et e e b
OFLO-==—mmm oo e o |
bt
RESET: +-w==== + o e +
; H | LIMIT |
1 =={EN ENQ|~==mr=momoecnes |[EN ENO|--<RETURN>
0 -1 { ===QUT 128--|MX
-l | j=-=BTR N--1IN j==NI
G -~} | o = GFLO l=={MN
1 == | =~~EMPTY e +
Fommm—— + '
POP_STK: b +
ot to st | SEL | B it 4
PTR ==| = {==PTR-~| < [-~EMPTY--|G |~=m—m- | i= |~=~OQUT
1 == ! 0 -~ ! l P00 == {==0FLO
o ot | b1 == | ==<RETURN>
STK[PTR]I--|INO | Fo———t
0 -=~]IN1 |
e +
PUSH_STK: tommm—- +
bt S Y
PTR =-=] + |==PTR--| = |~=4+==0FLO--~0Q[EN ENO/
1 --] | NI--| I i |
o bom=t 0 ===i | --EMPTY
| IN==~| |-=+=~STK [PTR]
| tmmmm- +
| em——wm- + +-=-0UT
. b =
. {==-EMPTY
0 -=-} {---OUT
tm———— +




« 178 = EC DIS 1131-3

F.5 Function block MIX_2_BRIX

Function block MIX_2_BRIX is to control the mixing of two bricks of solid material, brought one at a
time on a belt, with weighed quantities of two liquid components, A and B, as shown in figure F.1. A
~Start” (ST) command, which may be manual or automatic, initiates a measurement and mixing cycle
beginning with simultaneous weighing and brick transport as follows:
vL“smidAisweigheduptemark'a'cimeweigmmunﬂ.men iquid B is weighed up to mark "b°,
followed by filling of the mixer from weighing unit C;
- Two bricks are transported by belt imc the mixer.

The cycle ends with the mixer rotating and finally tipping after a predetermined time "1°. Rotation of
the mixer continues while it is amptying.

The scale reading "WC" is given as four BCD digits, and will be converted 10 type INT for intemal
operations. It is assumed that the tare {empty weight) “z" has been previously determined.

A B bricks
X va ] ve LI L L] e
(o\ beait motor
5 : ' i
M| ve o—d

transit detector
we | (D)

Weighing unit

]
tipping mixer

*Up" limit switch O@
S0 Cj
MR mixing

.....

bidirectional
tipping motor

Down" limit switch 5 g
St

Figure F.1 - Function biock MIX_2_BRIX - Physical model



IEC DIS 11313 «179 -

The textual form of the declaration of this function block is:

FUNCTION_BLOCK MIX_2_BRIX

(* Function block
END_FUNCTION_BLOCK

VAR_INPUT
ST : BOOL : {(* ®"Start™ command *)
d : BOOL ; {* Transit detector *)
80 : BOOL {(* "Mixer up® limit switch *)
$1 : BOOL : {» "Miyar down™ limit switch *}
WC : WORD: {= Current scale reading In BCD
z : INT ; {* Tare (empty) weight *)
WE : INT {* Desired weight of A *}
WB : INT {* Desired weight of B *}
tl : TIME ; {* Mixing time *)
END_VAR
VAR_OUTPUT
DONE ,
VA ’ (* Valve "AY 0 - close, 1 ~ open
VB p (* Valve "B¥ 0 - close, i = open
vC ¢ (* Valve "C" : 0 -~ close, 1 - open
MT ; (* Feed belt motor *)
MR , {* Mixer rotation motor *}
MEC (* Tipping motor "up" command *)
MP1 : BOOL: {(* Tipping motor "down™ command *}
END_VAR

body *)

*}

*}
*1

*}

A graphical declaration is:

tmm————————— +
| MIX 2_BRIX |
BOOL---|ST DONE | ---BOOL
BOQL~--i{d VA|~--BOOL
BOOL==~|S0 VB | ---BOOL
BOOL---| 51 VvC|---BOOL
WORD---{WC MT!---BOOL
INT=-~=|2 MR | ---BOOL
INT--~ WA MPO | -=-BOOL
INT--~|WB MP1|---BOCL
" TIME--—-|t1 |




. 180 - . IECDIS 11313

The body of function block MIX_2_BRIX using graphical SFC elements with transition conditions in the
ST language is:

o ————— Do ————— +
i

fummmpmewmt  fmm—fe—————

i{ START ||--=~{ N | DONE |

feman p s e b——— +

|
+ ST & SO & BCD_TO_INT(WC) <= z

f

T o T o + + s
| E
o e e o o e e it SRS 3 o e o e e
! WEIGH_ A [-—{| N | VA | | BRICKI {~--}{ 8§ | HT |
B el DT S e — Bt T et DL L
i i
+ BCD_TO_INT(WC)} >= WA+z +d
i f
b e s e aan e s e
| WEIGH B {~-~] N | VB | I DROP_1 |
o — o o e e s
i !
+ BCD_TO_INT(WC]) >= WA+WB+z + NOT d
[ [
o o e e o o o e e tmm——r———
i FILL f===f1 N | VC | | BRICKZ |
ot trm b B a2
i +d
| T S T T T
[ { DROP_2 |==-=1 R | MT |
| R it et x B s it
I |
mmowt s TEexEa Ry " +

{
+ BCD_TO INT(WC) <= z & NOT d

!
= S PN

B T
!
+ MIX.T >= t1l

!
fmmbmmt  dmeedmmm— tmmm—t

| TIP |--=-| N | MP1 | 51 |
tmmbmmt  fmmmtma—— tm——




EC DIS 11313 ‘ - 181 -

The body of function block MiX_2_BRIX ina textual SFC representation using ST language elements
is:

INITIAL STEP START: DONE(N); END_STEP

TRANSITION FROM START TO (WEIGH_A, BRICK1)
s ST & SO & BCD_TO_INT(WC) <= z;

END_TRANSITION

STEP WEIGH A: VA(N); END_STEF

TRANSITION FROM WEIGH A TO WEIGH_B := BCD_TO_INT(WC) »>= WA+z J
END_TRANSITION

STEP WEIGH_EB: VB(N)}; END_STEP
TRANSITION FROM WEIGH B TC FILL := BCD_TO_INT (WC) »= WA+WB+Z
END_TRANSITION

STEP FILL: VC(N); END_STEP
STEP BRICKL: MT(S); END_STEP _
TRANSITION FROM BRICK1 TO DROP_1 := d ; END_TRANSITIORN
STEP DROP_1: END_STEP
TRANSITION FROM DROP_1 TO BRICK2 := NOT d ; END_TRANSITION
STEP BRICK2: END_STEP
TRANSITION FROM BRICK2 TO DROP_2 := d ; END_TRANSITION
STEP DROP_1: MT(R); END_STEP
TRANSITION FROM (FILL,DROP_2) TO MIX
.= BCD_TO_INT(WC) <= z & NOT d ;
END_TRANSITION
STEP MIX: MR(S); END_STEP
TRANSITION FROM MIX TO TIP := MIX.T >= tl ; END_TRANSITION -
STEP TIP: MPL(N); END_STEP
TSANSITION FROM TIP TO RAISE := S1 ; END_TRANSITION
STEP RAISE: MR(R); MPO(N); END_STEP
TRANSITION FROM RAISE TO START := SO ; END_TRANSITION




-182 - EC DIS 1131-3

F.6 Analog signal processing

The purpose of this portion of of this annex is to illustrate the application of the programming
languages defined in this standard to accomplish the basic measurement and control functions of
process-computer aided automation. The blocks shown below are not restricted to analog signals;
they may be used to process any variables of the appropriate types. Similarly, other functions and
function blocks defined in this standard (e.g., mathematicai functions) can be used for the processing
of variables which may appear as analog signals at the programmable controller's /0 terminals.

These function blocks can be typed with respect io the input and output variables shown beiow as
REAL (e.g., XIN, XOUT) by appending the appropriate data type name, e.g., LAGI_LREAL. The
defauit data type for these variables is REAL.

These examples are given for illustrative purposes only. Manufacturers may have varying
implementations of analog signal processing elements, The inclusion of these examples s not
intended to preclude the standardization of such elements by the appropriate standards bodies.

F.6.1 Function biock LAG1

This function block implements a first-order iag fitter.

| LAGL |
BOOL---{RUN |
REAL---1{XIN X0U7T{---REAL
TIME--~]TAU |
TIME---|CY¥CLE !

FUNCTION_BLOCK LAG1

VAR _INPUT

RUN : BOCL : (* 1 = run, 0 = reset *)

XKIN : REAL ; {* Input variable *}

TAU : TIME : {(* Filter time constant *)

CYCLE : TIME : {* Sampling time interval *)
END_VAR
VAR OQUTPUT X0uT : REAL ; END_VAR (* Filterad output *}
VAR .K : REAL ; (* Smoothing constant, 0.0<=K<1.,0 *)
END_VAR

IF RUN THEN XOUT := XOUT + K * (XIN - XOUT) ;

ELSE XOUT := XIN ;
K := TIME TQ_REAL(CYCLE) / TIME_TO_ REAL(CYCLE + TAU) ;

END_IF ;
END_FUNCTION_BLOCK




EC DIS 11313 - 183 -

F.6.2 Function block DELAY

This function block implements an N-sample delay.

b m—————— +
] DELAY i
BOOL===| RUN }
REAL~=-~ | XIN X0UT| -=-REAL
INT=-==|N t
e e e st s +
FUNCTION_BLOCK DELAY {* N-sample delay *}
VAR _INPUT
RUN : BOOL ; {(* 1 = run, 0 = reset *)
¥XIN : REAL ;
N : INT (* 0 <= N < 128 or manufacturer— *)
END VAR {* specified maximum value *)
VAR_OUTPUT XOUT : REAL; END_VAR {* Delayed output *)
VAR X : ARRAY [0..127} {* N-Element gqueue *)}
OF REAL; {(* with FIFO discipline *j
"I, IXIN, IXQUT : INT := O;
END_VAR

IF RUN THEN IXIN := MOD(IXIN + 1, 128) ; X[IXIN] := XIN ;
IXOUT := MOD(IXOUT + 1, 128) ; XOUT := X[IXOUT]:
ELSE XOUT := XIN ; IXIN := N ; IXOUT := 0:
FOR I := 0 TO N DO X[I] := XIN; END_FOR;
END_IF ;
END_FUNCTION_ BLOCK




- 984 - ECDIS 1131-3

F.6.3 Function block AVERAGE

This function block implements a running average over N sampies.

R i +
[  AVERAGE |
BOQL~-~ | RUN |
REAL==-|XIN XOUT | ==~REAL
INT e | ;
e e i 0 e + -
FUNCTION_BLOCK AVERAGE
VAR INPUT
EN : BOOL {* 3 = yun, 0 = reget *)
XIN : RERL ; {* Input variable *}
N : INT {* 0 <= N < 128 or manufacturer- *)
END_VAR {* speciflied maximum value *}

VAR_OUTPUT XOUT : REAL ; END_VAR (* Averaged output *}

VAR SUM : REAL := 0.0; {* Running sum *)
- FIFO : DELAY ; {* N-Element FIFO *}
END_VAR

SUM := SUM - FIFO.XOUT ;

FIFO (RUN := RUN , XIN := XIN, N := N} ;
SUM := SUM + FIFO.X0UT ;

IF RUN THEN XOUT := SUM/N ;

ELSE SUM := N*XIN ; XOUT :=~ XIN ;

END_IF ;

END_FUNCTION_ BLOCK




IEC DIS 11313 - 985 -

F.6.4 Function block INTEGRAL

This function block implements integration over time.

e e e +
i INTEGRAL |
BOOL-~~[RUN Q|==~BOOL
BOOL=~=-=1R1 . }
REAL~==1XIN iOUT| --=-REAL
REAL~---1X0 P
TIME===|CYCLE f
e e e +
FUNCTION_BLOCK INTEGRAL
VAR_INPUT
RUN : BOCL : (* 1 = integrate, 0 = hold *)
R1 : BOOL ; {* Overriding reset *3
XIN : REAL ; {* Input variable =)
%0 : REAL : (* Initial value ®)
CYCLE : TIME ; {* Sampling period *)
END_VAR )
VAR_QUTPUT
Q : BOOL ; {(* NOT R1 *}
XOUT : REAL : {(* Integrated output *}
END_VAR

Q := NOT Rl :;
IF R1 THEN XQUT := X0 ;
ELSIF RUN THEN XOUT := XQUT + XIN * TIME TO_ REAL(CYCLE):

END_IF ;
END_FUNCTION_BLOCK




- 1886 -

F.6.5 Function block DERIVATIVE
This function block implements ditferentiation with respect to time.

EC DIS 1131-3

fomm e —————— +
} DERIVATIVE |
BOOL---|RUN !
REAL-=--|{XIN X0OUT | ==~REAL
TIME--~|CYCLE f
o e o +
FUNCTION _BLOCK DERIVATIVE
VAR_INPUT
RUN : BOOL ; (#* O = reset *}
¥XIN : REAL : {* Input to be differentiated *)
CYCLE : TIME ; {* Sampling period *}
END_VAR
VAR OUTPUT :
XOUT : REAL ; {* Differentiated output 3
END_VAR

VAR X1, X2, X3 : REAL ; END_VAR
IF RUN THEN

XOUT := (3.0 * (XIN - X3) + X1 - X2}

/ (10.0 = TIME”IO_REAL(CYCLE)} ;

X3 = X2 ; X2 = X1 ; X1 := XIN ;
EFLSE XOUT := 0.0; X1 := XIN ; X2 := XIN ; X3 := XIN ;
END_IF ;

END_FUNCTION_BLOCK

F.6.5 Function block HYSTERESIS

This function block implements Boolean hysteresis on the difference of REAL inputs.

e +
| HYSTERESIS |
REAL---|XIN1 Q| =--=BOOL
REAL=---|XIN2 {
REAL~---|EPS ]
e —— +

FUNCTION BLOCK HYSTERESIS
(* Boolean hysteresis on difference *)
(= of REAL inputs, XIN1 - XINZ *})

vAR_INPUT XIN1, XIN2, EPS : REAL; END_VAR
VAR_OUTPUT Q : BOOL := 0; END_VAR
IF Q THEN IF XIN1 < (XIN2 - EPS) THEN Q := O; END_IF ;
ELSIF XIN1 > (XIN2 + EPS) THEN Q := 1 :
END_IF ;
END_FUNCTION_BLOCK




EC DIS 1131-3 - 187 -

F.6.7 Function block LIMITS_ALARM

This function biock implements a highflow limit alarm with hysteresis on both outputs.

e et e w2 +

! LIMITS |

i ALARM |
{* High limit *} REAL--iH QH|--BOOL {* High flag *}
(% Variable value *} REARL--{X g1=-=BOOL (* Alarm output *}
{* Lower limit %y REAL--|L 0L} =--BOOL (* Low flag *}
{* Hysteresis *} REAL~-=-{EPS ! "

R L T +

HIGH ALARM
o i o +
| HYSTERESIS |
Kmmm oo e +ew | XIN1 Ql==tmmm o e QR
Riuininis b P
Hwmmmms e e e P e | XINZ bt
hlutalnd ! o I
! et o [
o m e |EPS I +
Femmmt | 4wmmemmem———— +  H--i o=l |
EPS---| / [==-+ l ! [===0Q
2.0---| o ! LOW_ALARM +==] i .-
Frmm—t | Ammmeemmm— + ] temm——— +
; Fm——t | | RYSTERESIS | |
Lo |+ e [XIN1 Ql-—dussmmmmm———— QL
f [ ! ol l
poe | == | XIN2 !
! -t | f
Fmmmm————————— |IEPS |




F.5.8B Structure ANALOG__LIMITS

- 188 -

IEC DIS 11313

This data type implements the declarations of parameters for analog signal monitoring.

STRUCT
BS : REAL
HM : REAL
HA : REAL
H¥ : REAL
NV : REAL
EPS : REAL
LW : REAL
LA : REAL
LM : REAL
LS : REAL

END_STRUCT

END_TYPE

TYPE ANALOG LIMITS :

q*
(k
{*
(‘k
(ﬁ’
{w
{*
(ir
{*

(*

High
High
High
High
Nomi
Hysat
Low
Low
Low
Low

end of signal range *}

end of measurement range *)
alarm threshold *)

warning threshold *}

nal value *}

eresis *)

warning threshold *j

alarm threshold *}

end of measurement range *)
end of signal range *)




[EC DIS 11313 - 189 -

F.5.9 Function block ANALOG_MONITOR

This function block implements analog signal monitoring.

e —————— +
| ANALOG_ |
} MONITOR |
REAL--1X SE|--BOOL
ANBLOG _LIMITS--1L ME { —~BOOL
i ALRM|--BOOL
] WARN ! ~~BOOL
J QH{=--BOOL
S +

g*

Signal error *)

(= Measurement error *}
{(* Alarm *)

{* Warning *)

(* 1 = Signal high *)

(* Punction block body in FBD language ™)

SIGNAL_ALARM MEAS_ ALARM
B T + o e e e e +
| LIMITS_ALARM | | LIMITS_ALARM |
L.HS---[H Ql~~=SE  L.HM-==|H Qi-==ME
Xmmmmm= IX | b IX 1
L.1LS---1L i L.LM-==iL :
EPS~=--—{EPS | EPS~-—-|EPS i
T + e o +
ALARM WARNING
o —————— + o i e +
| LIMITS_ALARM | | LIMITS_ALARM |
L.HA-~-{H Qi---ALRM L.HW---(H Q1 -==WARN
Xmmmmmm iX | X=-=1X 1
L.LA--~|L | L.LW~--1L |
EPS----|EPS | EPS---|EPS |
e —————— + fommmrm +
R -
SIGNAL_ALARM.QR---| >= 1 |---QH
MEAS_ALARM.QH==-~- i l
ALARM , QH-—======m= l |
WARNING.QH--=====~- | |
O +




.180 - [EC DIS 11313

F.6.10 Function block PID

This function block implements Proportional + integral + Derivative controt action. The functionality i
derived by functional composition of previousty declared function blocks.

e s +
! PID i
BOOL--~ | AUTO i
REAL--= | BV XOUT | -~~REAL
REAL-~- | SP | '
REAL-~-= X0 i
REAL-~=|KP i
REAL--~|TR {
REAL~===|TD :
TIME==-{CYCLE |
o o e -
FUNCTION_BLOCK PID
VAR _INPUT
AUTO : BCOL : {(* 0 = manual , 1 - automatic *)
PV : REAL {* Process variable *)
SP : REAL - {* Set point *}
X0 : REAL ; (* Manual ocutput adjustment - *}
{* Typically from transfer station *}
KP : REAL ; (* Proporticnality constant *)
TR : REAL ; (* Reset time *}
TD : REAL (* Derivative time constant *)
CYCLE : TIME - (* Sampling periecd ™)
END_VAR
VAR _QUTEUT XOUT : REAL; END_VAR
VAR ERROR : REAL ; (* PV - 8P *)
ITERM : INTEGRAL ; (* FB for integral term *)
DTERM : DERIVATIVE ; (* FB for derivative term *)
END_VAR
ERROR := PV - SP ;
{(*** Adjust ITERM so that XOUT := X0 when AUTO = Q ***)
ITERM (RUN := AUTO, R1 := NOT AUTO, XIN := ERROR,
%0 := TR * (X0 - ERROR}, CYCLE := CYCLE) ;
DTERM (RUN := AUTO, XIN := ERROR, CYCLE := CYCLE} ;
XOUT := KP * (ERROR + ITERM.XOUT/TR + DTERM.XOUT*TID)
END“EUNCTION_BLOCK




iEC DIS 1131-3 =191 -

F.6.11 Function block DIFFEQ

This function block implements a general difference equation.

U —— +
{ DIFFEQ |
BOOL -~ | RUN |

REAL--~{XIN  XOUT{---REAL
ARRAY([1..} OF REAL---|h |
INT~~=-|M |
ARRAY[0..] OF REAL~~-|B |
INT~~~|N |
i e o +

FUNCTION BLOCK DIFFEQ

VAR_INPUT
RUN BOOL {* 1 = yun, 0 = reset *}
XIN REAL
A : ARRAY[1l..] OF REARL ; {* Input coefficients =}
M : INT ; (* Length of input history =*}).
B : ARRAYI[O..] OF RERL ; (* Output ceoefficients *)
N : INT ; (* Length of output history *)
END_V
VAR_QUTPUT XOUT : REAL := 0.0 ; END_VAR
VAR (* NOTE : Manufacturer may specify other array sizes *)
¥ : ARRAY [0..128) OF REAL ; (* Input history *)
X0 : ARRAY ({0..128] OF REAL ; (* Output history *)
I : INT ;
END_VAR
XO[0} := XOUT ; XI[0] := XIN ;
XoUuT = B{0] * XIN :
IF RUN THEN
FOR I := M TO 1 BY =1 DO
XOUT := XOUT + A[I] * XO[I] : XO[I] := XO[I-1];
END_FOR:
FOR I := N TO 1 BY -1 DO
XOUT := XOUT + B{I] * XI[I] ; XI[I} := XI[I-1]:
- END_FOR;
N ELSE
- FOR I := 1 TO M DO XO[I] := 0.0; END FOR;
FOR I := 1 TO N DO XI[I] := 0.0; END_FOR:
END_IF ;

END_FUNCTION_BLOCK




. 192 - . IECDIS 1131-3

F.5.12 Function block RAMP

This function block implements a time-based ramp.

fmm————————— +
I RAMP i
BOOL=~~ | RUN BUSY | »=-BOOL
REAL~~-1X0 A0UT [ ~~=REAL
REAY,~== X1 !
TIME-~-~{TR f
TIME-=~|CYCLE s h
o e o 2 -
FUNCTION BLOCK RAMP
VAR_INPUT
RUN : BOCL ; {(* 0 - track X0, 1 - ramp to/track X1 #*}
X0,¥1 : REAL ;
TR : TIME {* Ramp duration *)
CYCLE : TIME ; {* Sampling period *)
END_VAR _
VAR _OUTPUT

BUSY : BOOL ; ({* BUSY = 1 during ramping period =*}
XOUT + REAL := 0.0 ;

END_VAR
VAR XI : REAL ; (* Initial value ¥*)
T : TIME := T#0s; (* Elapsed time of ramp *)
END_VAR
BUSY := RUN ;
IF RUN THEN -

IF T >= TR THEN BUSY := 0 ; XQOUT := X3 ;
ELSE X0OUT := XI + (X1-XI} * TIME TO_REAL(T)
/ TIME_TO_REAL(TR) ;
T := T + CYCLE ;
END IF ;
ELSE XQUT := X0 ; XI := X0 ; T := t#0s ;
END_IF ;

END_FUNCTION_ BLOCK




IEC DIS 1131-3 - 183 -

F.6.13 Function block TRANSFER

This function block impiements a manual transfer station with bumpless transier.

| TRANSFER |
BOOL--~ {AUTO I
REAL-=={XIN  XOUT{-=-~REAL
REAL--~{FAST RATE |
REAL---|SLOW_RATE |
BOOL~~-|FAST_UP |
BOOL--~- | SLOW_UP i
BOOL-=~ |FAST_DOWN |
BOOL-=~| SLOW_DOWN |
TIME-~~-|CYCLE |

frm——————— +
FUNCTION_BLOCK TRANSFER
VAR_INPUT
AUTO : BOOL {(* 1 - track X0, 0 - ramp or hold *)
XIN : REAL ; {* Typically from PID Function Block *)

FAST _RATE, SLOW_RATE : REAL ; (* Up/down ramp slopes *)
FAST UP, SLOW_UP, (* Typically pushbuttons *)
FAST DOWN, SLOW _DOWN : BOCL:
CYCLE : TIME ; {* Sampling period *}
END_VAR
VAR_OUTPUT XOUT : REAL ; END_VAR

VAR XFER_RAMP : INTEGRAL ;
RAMP RATE : REAL ;
END_VAR
RAMP RATE := 0.0 ;
IF NOT AUTO THEN
IF FAST_UP THEN RAMP_RATE := FAST_RATE; END_IF:
IF SLOW UP THEN RAMP_RATE := RAMP_RATE + SLOW_RATE; END_IF;
IF FAST DOWN THEN RAMP_RATE := RAMP_RATE - FAST_RATE; END_IF;
IF SLOW _DOWN THEN RAMP_RATE := RAMP_RATE -~ SLOW_RATE; END_IF;
END_IF ;
. XFER_RAMP (RUN := 1, CYCLE := CYCLE, Rl :
XIN := RAMP_RATE, X0 := XIN) ;
XOUT := XFER_RAMP .XOUT;
END_FUNCTION_BLOCK




. 194 - IEC DIS 11313

F.7 Program GRAVEL

A contro! system is to be used to measure an operator-specified amount of gravel from a silo into an
intermediate bin, and to convey the gravel after measurement from the bin into a truck.

The quantity of gravel to be transferred is specified via a thumbwheel with a range of 0 to 99 units.
The amoum of gravel in the bin is indicated on & digital display.

Forsafetyrems,mdmmahmmﬁmmmwmmes:bmm
The signalling functions ars to be implemented in the control program.

A graphic representation of the control problem is shown in figure F.2, while the variable deciarations
for the control program are given in figure F.3.

As shown in figure F .4, the operation of the system consists of a number of major states, beginning
with filling of the bin upon command from the FiLL push button. After the bin is filled, the truck loading
sequence begins upon command by the LOAD pushbuttor: when a truck is present on the ramgp.
Loading consists of a “run-in” peried for starting the conveyor, followed by dumping of the bin contents
onto the conveyor. After the bin has emptied, the conveyor "runs out” for a predetermined time to
assure that all gravel has been loaded to the truck. The icading sequence is stopped and re-initialized
if the truck leaves the ramp or if the automatic control is stopped by the OFF push button.

Figure F.5 shows the OFF/ON sequence of automatic control states, as well as the generation of
display blinking pulses and conveyor motor gating when the control is ON.

Bin level monitoring, operator interface and display functions are defined in figure F.6.

A textual version of the body of program GRAVEL is given in figure F.7, using the ST language with
SFC elements.

An example configuration for program GRAVEL is given in figure F.8.



IEC DIS 1131-3 =185 -
o + CONTROL PANEL:
| S8ILO f INDICATORS PUSH BUTTONS
§ { ON
{ | CONTROL SYSTEM ON QFF
l } TRUCK ON RAMP ACKNOWLEDGE
t { SI1L0 EMPTY FILL
hY ! CONVEYOR RUNNING LOAD
hY / LAMP TEST
| 1 "Silo empty"”
t o | limit switch >.DIGIT BCD:
it / | 8ilo valve DISPLAY THUMBWHEEL
¥t BIN LEVEL SET POINT
: BIN : SIREN : SILO EMPTY
\ / "Bin empty"
o | limit switch
j / | Bin wvalve
T
*Truck on ramp" limit switch -

Figure F.2 - Gravel measurement and lcading system




- 196 -

IEC DIS 11313

PROGRAM GRAVEL (* Gravel measurement and lcading system *)

VAR_INPUT
OFF_PB :
ON_PB
FILL PB :
SIREN ACK
LOAD PB
JOG_PB :
LAMF TEST
TRUCK_ON_RAMP
SILO_EMPTY LS
BIN EMPTY LS
SETPOQINT
END_VAR
VAR_OUTPUT
CONTROL_LAMP :
TRUCK_LAMP :
SILO_EMPTY LAMP
CONVEYOR_LAMP
CONVEYOR_MOTOR
SILO_VALVE
BIN_VALVE
SIREN
BIN _LEVEL
END_VER
VAR
BLINK_TIME : TIME;
PULSE_TIME : TIME;
RUNOUT_TIME: TIME;
RUN_IN_TIME: TIME;
SILENT _TIME: TIME;
OK_TO_RUN : BOOL;
(* Function Blocks

Y]

-

: BOOL

BOOL

: BOQL

BOOL

BOOL ;
; {* Load truck from bin *}

BOOL

: BOOL

: BOOL ; {* Optical sensor *}
: BOOL ; :

: BOOL ;

: BYTE ; (* 2-digit BCD *)

BOOL
BOQL :
BOOQL ;
BOOL

-y

: BOOL

BCOL

: BOOL ;

BQOL ;

: BYTE :

{* BLINK ON/OFF time ¥*)

{* LEVEL _CTR increment interval *)

(* Conveyor running time after loading *)
(* Conveyor running time before loading *)
(* Siren silent time after SIREN ACK *)

{* 1 = Conveyor is allowed to run *)

*)

BLINK: TON; {(* Blinker OFF period timer / ON cutput *)
BLANK: TON: (* Blinker ON periocd timer / blanking pulse *)
PULSE: TON; {(* LEVEL_CTR pulse interval timer *)

SIREN FF: RS;

SILENCE_TMR: TP; (* Siren silent period timer *)

END_VAR

VAR RETAIN LEVEL_CTR :

{* Program body *)
END_PROGRAM

CTU ; END_VAR

Figure F.3 - Declarations for Program GRAVEL




EC DIS 1131-3 - 187 -

o e ————
|1 START ||

-t - st R =

i
+ FILL PB & CONTROL.X

tmmm—— e N e L T +
{ FILL BIN |[==={ ¥ | SILO_VALVE |
e o e e e ———— e e +
{
o e e e e B . B e e e R A B B e #
l |
+ NOT FILL _PB OR NOT CONTROL.X + LEVEL CTR.Q
e ]
ot et i B e e +
e e o +
!} LOAD WAIT |
R +

o +
O
[
o e e e e o *
| |
+ NOT OK_TO_RUN + RUN_IN.T >= RUN_IN_TIME
! !
o dm——— fommmt dmwetmmmm——————- +
! | DUMP_BIN {=---] N | BIN_VALVE |
i bm—— dommet  dmmmfemm——————— +
i I
| PRI R——— ®
| P |
|+ NOT OK_TO_RUN + BIN_EMPTY_LS
I ! !
N — T
| | RUNQUT |
| PO
| {
| o ———— e ————————— -
} | I
|+ NOT OK_TO_RUN + RUNOUT.T >= RUNOUT_TIME
——— |
_______________________________________ -+

Figure F.4 - SFC of program GRAVEL body




- 188 - IEC DIS 1131-3

“““““““““ + 3
|
+ OFF_PB
f
+ = - 4 4  femedmmesmmome———————— +
I ICONTROQL QFF|[! [{ MONITOR |{|~==| N | MONITOR_ACTION |

} + ) + o o e e o o 2 5 e s +

|
+ ON_PB & NOT OFF_PB

A e s £ o A e e +

{CONTROL|~~1 N | CONTROL_ACTION 1 i

o e i e e o ot e o e i s £ 0 e S 5 s T e o +

l i o o e +

--------- + 1 | BLINK BLANK | |

i | =+ e o o o + o + {

i F===0l& | | TON | | TON | i i
ICONTROL . Xomm | | momm—n JIN Q|===== 1IN Ql--+

} 4=+ #==]P7T | +==1PT | |

i T + | Ammee- + |

i BLINK TIME=w$emmm==m———— + |

] +-+ |

{CONTROL , X==mm=~ 1& 1 x

{TRUCK_ON_RAMP==| [~-—4=w=n—cw=- OK_TO_RUN |

i +=+ 1 !

i | =+ !

] R + +=--|&}--CONVEYOR MOTCR |

|JOG_PB-=--=-~ | >l [===-- I |

{RUN_IN.X----| f et |

iDUMP_BIN.X--| E |

| RUNOUT . X==~~=| o l

| tm———— * |

o e o o ) e +

Figure F.5 - Body of program GRAVEL (continued)
Control state sequencing and monitoring




IEC DIS 1131-3 =188 -
MONITOR_ACTION
+=-=t
CONVEYOR_MOTOR---—--—--sswmwmonneaana— | & |==m==- CONVEYOR_LAMP
BLINK.Q=-mmm-m—-m—msmess e e -—i
bt
e +
CONTROL X o o oo o o st e st o e 4 } >ml |==-=CONTROI_LAMF
LAMP TEST-==m—moosmoe o o 6 i 5 ; I
i e +
o hme—— +
$mme | pm] |meewse——————— TRUCK_LAMP
TRUCK_ON_RAMP=~w==ow- Tpm— |
| peme—— +
i tom——— +
o e | >wl |-==SILO_EMPTY LAMP
Fom—t i B
BLINK.Q---m—=wwwmo- | & jeme————————— | x
SILO_EMPTY LS-—dm==| i do——— +
|  +=--+ SIREN FF
| - +
| P RS
trmm o ————e 1§ Qll---rmewme==o SIREN
SILENCE_ TMR ! t
Fomom—- + ! !
| TP | | !
SIREN_ACK~m=-- [IN Q=== |R1 i
SILENT_TIME---|PT ] e al +
Hmrn—— + LEVEL_CTR
oo +
P CTU |
BIN_EMPTY LS-m===--==nwseco=- (R Qi
Fmm o ———————— + | i
| PULSE o !
I t=t  femm—— + 1 |
+--=-01&} | TON | | | f
FILL BIN.X~--] |-—}IN Q|==+-=>CU b
_ +-+ | ! ! !
PULSE_TIME=====—= IPT | ! t
pomm——— + I I
o m—————— + { R T ———— +
SETPOINT---~| BCD_TO_INT {--~|PV CV{~-| INT_TO_BCD |--BIN_LEVEL
ettt +  pe———— I +

Figure F.6 - Body of action MONITOR_ACTION in FBD language




- 200 - ECDIS 11313

{(* Major operating states *)
INITIAL STEP START : END_STEP
TRANSITION FROM START TO FILL_BIN

:= FILL_PB & CONTROL.X ; END_TRANSITION
STEP FILL BIN: SILO_VALVE(N); END_STEP
TRANSITION FROM FILL BIN TO START

.= NOT FILL PB OR NOT CONTROL.X ; END_TRANSITION
TRANSITION FROM FILL BIN TO LOAD_WAIT := LEVEL CTR.Q :
END_TRANSITION
STEP LOAD_WAIT : END_STEP
TRANSITION FROM LOAD WAIT TO RUN_IN

.= LOAD_PB & OK_TO_RUN ; END_TRANSITION
STEP RUN_IN : END_STEP
TRANSITION FROM RUN_IN TO LOAD_WAIT := NOT OK_TO_RUN ;
END_TRANSITION
TRANSITION FROM RUN_IN TO DUMP_BIN

.= RUN_IN.T > RUN_IN TIME;
END_TRANSITION -7
STEP DUMP_BIN: BIN VALVE (N); END_STEP
TRANSITION FROM DUMP BIN TO LOAD WAIT := NOT OK_TO_RUN :
END_TRANSITION - - -
TRANSITION FROM DUMP BIN TO RUNOUT := BIN_EMPTY_LS ;
END_TRANSITION - B -
STEP RUNOUT : END_STEP
TRANSITION FROM RUNOUT TO LOAD_WAIT := NOT OK_TO_RUN ;
END_TRANSITION

TRANSITION FROM RUNCUT TO START
;= RUNQUT.T >= RUNOUT_TIME ; END_TRANSITION

Figurs F.7 - Body of program GRAVEL In textual SFC representation
using ST language elements
{(continued on following page)



EC DIS 1131-3 ' - 201 -

(* Control state sequencing *)
INITIAL_STEP CONTROL_OFF: END_ STEP

TRANSITION FROM CONTROL_OFF TO CONTROL
:= ON_PB & NOT OFF_PB ; END_TRANSITION

STEP CONTROL: CONTROL ACTION (N); END_STEP

ACTION CONTROL_ACTION:
BLINK (EN:=CONTROL.X & NOT BLANK.Q, PT := BLINK TIME) ;
BLANK (EN:=BLINK.Q, PT := BLINK_TIME) :

OK_TO_RUN := CONTROL.X & TRUCK_ON_RAMP ;
CONVEYOR_MOTOR :=
OK_TO RUN & OR(JOG_PB, RUN_IN.X, DUMP_BIN.X, RUNOUT.X);

END_ACTION '

TRANSITION FROM CONTROL TO CONTROL _OFF := OFF_PB ;

END_TRANSITION

{* Monitor Logic *}

INITIAL STEP MONITOR: MONITOR_ACTION(N); END_STEP

ACTION MONITOR_ACTION:
CONVEYOR_LAMP := CONVEYOR_MOTOR & BLINK.Q :
CONTROL_LAMF := CONTROL.X OR LAMP_TEST ;
TRUCK_LAMP := TRUCK_ON_RAMP OR LAMP_TEST ;
SILO_EMPTY LAMP := BLINK.Q & SILO_EMPTY_ LS OR LAMP_TEST ;
SILENCE TMR (EN:=SIREN_ACK, PT:=SILENT_TIME) ;
SIREN FF(S:=$ILO_EMPTY_LS, R1:=SILENCE_TMR.Q) ;
SIREN := SIREN_FF.Q1 ;
PULSE (EN:=FILL_BIN.X & NOT PULSE.Q, PT:=PULSE_TIME) ;
LEVEL_CTR(EN := BIN_EMPTY LS, CU := PULSE.Q,
PV := BCD_TO_INT(SETPOINT)} ;
BIN_LEVEL := INT_TO_BCD (LEVEL_CTR.CV) ;
END_ACTION

Figure F.7 - Body of program GRAVEL in textual SFC repressntation
using ST language elements (continued)



CONFIGURATION GRAVEL_CONTROL
RESOURCE PROC1 ON PROC_TYPE_Y

PROGRAM G : GRAVEL

{* Inputs *)}
{OFF_PR :
- ON_PB
FILL PB
SIREN ACK H
LOAD PB :
JOG_PB
LAMP_TEST :
TRUCK_ON_RAMF
SILO_EMPTY LS :
BIN_EMPTY LS
SETPOINT

{* QOutputs ¥}
CONTROL_LAMP
TRUCK_LAMF
SILO_EMPTY LAMP
CONVEYOR_LAMP
CONVEYOR_MCTCR
SILO_VALVE
BIN VALVE
SIREN
BIN_LEVEL

END_ RESOURCE

END_CONFIGURATION

B

$10.0 ,
$I10.1 ,
$70.2
$10.
$10.
£10.
RI0.
%I1.
$I1.
$I1.
$IB2

y Ut o w) LA da {a
=

=> %04.0,
=> %04.2,
=> ¥04.3,
=> %(Q5.3,
=> §Q5.4,
=> §Q5.5,
=> %05.86,
=> %Q5.7,
=> %B6) ;

Figure F.8 - Example configuration for program GRAVEL

EC DIS 1131-3



ECDIS 11313 : =203 -

F.8 Program AGV

As illustrated in figure F.9, a program is to be devised to control an automatic guided vehicle (AGV).
The AGV is 1o travel between two extreme positions, left (indicated by kmit switch S3) and right
(indicated by limit switch S4). The normal position of the AGV is on the left.

The AGY is to execute one cycle of lefi-to-right and retumn motion when the operator actuates
pushbutton S1, and fwo cycles when the operator actuates pushbution S2. 1t is also possibie to pass
from a single to a double cycle by actuating pushbutton S2 during & singie cycle. Finally, non-repeat
kocking is o be provided if either §1 or 52 remains actuated. :

Figure F.10 iliustrates the graphical declaration of program AGV, while figure F.11 shows a typical
configuration for this program. Figure F.12 shows the AGY program body, consisting of a main
controf sequence and a single-Cycle control sequence. _

L RIGHT_LS

4 N
AGYV Control Panel

SINGLE_PB 11 Cyclel |2 Cycleq DOUBLE_PB

e S

Figure F.9 - Physical modei for program AGV




- 208 - . ECDIS 11313

| AGV i
BOOL---|SINGLE_PB  FWD_MOTOR{---BOOL
BOOL---|DOUBLE_PE  REV_MOTOR|---BOOL
BOOL=-~~|LEFT_LS [
BOOL~-~={RIGHT_LS |

Figure F.10 - Graphicel declaration of program AGY

CONFIGURATION AGV_CONTROL

RESQURCE AGV_PROC: SMALL PC

! AGV E
$IX1---|SINGLE_PB FWD_MOTOR|=---%QX1
$IX2---|DOUBLE_PB REV_MOTOR|---%QX2
$IX3~--|LEFT_LS !
$IX4--~|RIGHT_LS ;

Figure F.11 - A graphical configuration of program AGY .




EC DIS 11313 - 205 -
o e e +
U R— {(* Main sequence *)
| {START |
e SIS - BT TS +f-
o o e DU +

+ READY .X & SINGLE_PB
E .

e - e i W S = . P

+ READY.X & DOUBLE_FB
|

t

1

§

1

13

i

!

: oo o - ——— + fmmmd i oo +
} PSINGLE+— 1 NICYCLE :DOUBLE_1+-"1N:CYCLE:

! bt o —— + frmmtm et o ——— +
i - f '

' B e s o + + DONE.X

; : + DONE.X & DOUBLE_PB |

: ' b et s +

i | |

: ; - o ——— +

: + DONE.X & NOT DOUBLE PE |DOUBLE_WAIT

t ! o —— fmm——— +

| I 1

' : + READY.X

f ] l

: ' T e +
' i !DOUBLE_2+—'{N:CYCLE:

' ! R St ettt +
i | f

: ; + DONE.X

| I i

! e ————— trmmm———— +

4 g

' B +

: 'NON_REPEAT !

' tm—nmp o ——— +

Figure F.12 - Body of program AGV

{continued

on foliowing page)




- 206 - IECDiS 11313

------- +
1
et ——— {(* Perform a single cycle *)
{ {READY ) |
o e e R
{
+ CYCLE
i
st i o et e +
| FORWARD +— | N | FWD_MOTCR |
et +
!
+ RIGHT LS
|
fummdosmnd dmd e ————— +
{REVERSE+~ N|{REV_MCTCR |
Fommtm—mt tmtmmmm e ——— +
I
+ LEFT_LS
I
==t
{ DONE |
+o—t-t
!
+ NOT CYCLE
!
wwwwwww +

Figure F.12 - Body of program AGV (continued)



c BCDIS 11312 - 27 -

ANNEX G - Indax (informative)

Primary references for delimiters and keywords are given in annex C. The point of definition of a term
is shown in bold face type.

absolute time, 29

access path, 105, 107-9
commuinication, 15-18
keyword, 40
loading/deietion, 15
programming, 18-20

action, 77, 83-82, 118, 120
gontrol, 88-92
qualifiers, 88

action block, 83, 86, 87, 88
active association, 88, 89
activity flow, 128

~ aggregate, 10

argument, 44, 61, 120, 121, 122

array, 44
access path, 107
declaration, 33-34, 41
initialization, 33, 42-43
location assignment, 41
usage, 38, 127

assignment, 45, 46, 47, 79
FOR loop variable values, 126
function biock parameters, 62
of input values, 125
operator, 33, 79
statement, 124, 125

based number, 10, 27-28
basic code table, 24
bistable function block; 70-71
bit string '
_comparison, 54
data types, 30-32
functions, 54-55

initial vaiue assignmert, 42-43
variable declaration, 40-41

function, 46, 47, 48, 125
function biock, 61-76
program organization unit, 130



¢

-2 - EC DIS 11312

ANNEX G - index {continued)

Boolean
AND, in ladder diagrams, 135
data type, 30-32
default inttial value, 34
edge detection, 63, 72
expression, 79, 122, 126, 127
functions, 54-55, 8¢ .
input, action controd, 88, &9 : =
input, RETURN, 132
iterals, 27-28
negation, 45, 118
operators, 120, 123
OR, LD vs. FBD, 138
output, 132
signal, 132
values, power flow, 134
variable, 3B, 77, 78, 83, 84, 87, 88, 110, 128, 132
_variable, in ladder diagrams, 135, 137

byte (data element size), 38
BYTE (data type), 30-32, 34

call
operator, 120, 121

case (of characters), 24, 25, 29

CASE statement, 124, 126

character code, 24, 26, 28, 58
character set, 8, 24-25, 77,99, 128, 136

character string
character positions in, 58
comparison, 58
data type, 30-32
functions, 58-59
initialization, 42-43
literals, 28
variable deciaration, 40-41

cold restart, 39, 40, 41, 42, 43
comment, 26, 119
comparnsoen

bit strings, 54

character strings, 58
functions, 54, 59

compilation, 22



EC DIS 1131-3 . o0

ANNEX G - Index (continued)

compliance, 21-23
action declarations, 83
EXIT statememn, 125
PC systems, 21
programs, 23
sequential function chart (SFC), 104
step/action association, 86
syntax, 22

concatenation
action blocks, 86, 87
hierarchical addresses, 37
time data, 60

conditional
call, 121
instruction, 120
jump, 132
- retum, 132

configuration, 14-15
communication, 15-18
elements, 105-17
inftialization, 15
programming, 19-20
starting and stopping, 15

connection, 17,76
connector, 79, 81, 128, 129
contact, 135-36

counter, 73

data type
compliance, 22
declaration, 33-34
elementary, 30-32
generic, 32, 48, 49
initialization, 34-35

. of an expression, 122

- of functions, 47
of input parameters, 47
of intemal variables, 47
programming, 19-20
usage, 36

date and time, 74
data types, 30-32
default intial values, 34
functions, 59
lterals, 30

decimal number (decimal lteral), 27-28, 128



ANNEX G - Index (continued)

deciaration, 19-20
access paths, 107-9
actions, 83-85, 88
configurations, 105-17
data types, 33-34
function biocks, 81, 62-68
functions, 47-48, 125
programs, 76
resources, 107-8
tasks, 110-17
variables, 3940, 137

detault value, 48
FOR increment, 126
function block inputs, 83
of data types, 34-35
of variables, 38, 42-43
task intervai, 110
delimiter
comments, 26
LD network, 134
network label, 128
time literals, 29-30

direct representation, 37-38, 76, 107, 108
in programs, 76
intial value assignment, 42-43
variable declaration, 40-41

double word, 30-32
size prefix, 38

duration
data type (TIME), 30-32
literals, 29
of action qualifiers, 88
of step activity, 93

edge detection, 63, 66
function blocks, 72
EN/ENO (enabie) variables, 46, 47

ermors, 44, 48, 78, 89, 93, 125, 127, 128
documentation, 22
handiing, 22, 23, 46
reporting, 22

=210 -

EC DIS 11313



-

EC DIS 11313 211 -

ANNEX G - index (continued)

evakation
of assignment statements, 125
of CASE expressions, 126
of expressions, 122-23
of function blocks, 111
of functions, 44, 53, 123, 125
of instructions, 114-21
of language slements, 111
of network esiemerts, 130
of networks, 81, 130-31, 135, 138
of programs, 111
of transitions, 84, 85, 86, 57
gxecution
of actions, 77, 88
of EXIT statements, 127
of function blocks, 61, 72, 110
of functions, 44, 46-47
of instructions, 118-21
of iteration statements, 126-27
of loop eiements, 130
of programs, 132
of selection statements, 126

execution control element, 77, 110, 130, 132-33, 135

exiensions, 22 24 26, 37
documentation, 22
processing, 22
usage, 23

falling edge, 63, 65, 72

feedback
path, 130, 131
variable, 130

FCR statement, 126-27

function, 44-60
compliance, 22
control statements, 125-26
‘extensible, 50
in LD language, 135
overioaded, 48, 48, 52, 54
programming, 19-20
retum vakie, 125
signal flow, 128
typing, 48



ANNEX G - Index (continued)

function block, 14-15, 61-76
action control, 88-92
communication, 15-18, 76
compliance, 22
control staternents, 125-26
in LD ianguage, 135
nstance, 110
operation, 73, 74
programming, 19-20
retentive, 78
SFC structuring, 77
signal flow, 128
type, 61

function biock diagram (FBD), 14, 138
gxecution control, 132-33

oops in, 130
signal flow in, 128

function block diagram (fod)
action blocks in, 87

generic data types, 32, 48, 48

global variable, 105
communication, 15, 17
declaration, 39-40, 76, 107-5
function biock instance, 61
initial value assignment, 42-43
initialization, 15
loading/deletion, 15
programming, 19-20

hierarchical addressing, 37
idertifier, 25, 47, 61, 77,78, 123, 128

implementation-dependent
feature, 22, 23, 39, 41, 126
parameter, 21, 33, 37, 38, 50, 73, 83
side effects, 62
inttial '
state, 77
step, 77,78,93
initial value
assignment, 42-43
default, 34-35
feedback variable, 130
FOR ioop variable, 126
function block variables, 63, 125

initialization, 15, 39
function blocks, 62-63, 93
programs, 76, 93
SFC networks, 93
steps, 78

- 249 -

EC DIS 1131-3



" EC DIS 11313 213

ANNEX G - Index {continued)

input
declaration, 39-40, 47-48, 62-69
dynamic, 63
extensible, 50
initialization, 39
instance name, 61
location prefix, 38
negated, 45
operators (IL language), 121
overivaded, 48, 49
parameter, 44, 61, 126
parameter, read/write privileges, 62
program, 108
string, 51
variabie, 61, 76, 107, 135

input/output

©  parameter, 62-68
variable, 61

instance
tunction block, 61, 63, 65, 110
name, 61, 63, 65

instantiation
action control, 89
funclion block, 76
program, 76

instruction, 79, 83, 119-21

integer
data types, 30-32, 126
iiteral, 12, 27-28, 128
invocation
. by tasks, 110
function biock, 61, 62, 83, 121, 124, 125-26, 125
of actions, 77
of functions, 44, 45, 121, 122-23
of non-PC language elements, 19
recursive, 44
retum from, 132

teration, 125, 126-27



ANNEX G - index (continued)

keyword, 26
Boolean literals, 27, 79
data types, 30-32
ELSE statemert, 126
FOR statement, 126
function biock deciaration, 63
function declaration, 47
IF statement, 126
program declaration, 76
REPEAT statement, 127
tims literals, 26-30
fransition, 79
variable declaration, 36-40
WHILE statement, 127

jabel, 119, 120
connector, 128
network, 128, 130, 132

ladder diagram, 134-37
evaluation, 130-31
execution conirol, 132-33
network, 79

language element, 9, 14-15
compliance, 21-23
programming, 19-20, 76

fibrary, 19-20, 107
iteral, 27-30, 119, 122, 134
logical location, 37, 39, 40
long real, 30-32

long word, 30-32

memory, 135

memory (user data storage)
allocation, 39-40, 137
direct representation, 37-38
initial vaiue assignment, 42-43
initialization, 39

named element, 38, 125, 128

network, 88, 128
direction of flow, 128
evaluation, 61, 130-31, 135, 138
function block diagram (FBD), 79, 83
label, 132
ladder diagram (LD), 79, 134
sequential function chart (SFC), 77, 91, 83

numeric fiterals, 27-28
off-delay, 13, 74-75
on-delay, 13, 74-75

- 214 -

EC DIS 11313



EC DIS 11313 =215 -

ANNEX G - Index (continued)

operand
function as, 44
of an expression, 122-23
of an instruction, 119-21

operator
assignhmert, 33, 78, 125
Instruction List, 118-21
overicaded, 48
precedence, 122, 123
Structured Text (ST}, 122-23
syrmbois, 53, 55, 56, 57

output
action control, 88

geclaration, 62-69

function block, 124, 138
graphical representation, 45, 61
location prefix, 38

negated, 45

network, 138

parameter(s), 45, 61
parameter, read/write priviieges, 62
program, 108

string, 51

typed, 48

values, 61

variable declaration, 35-40
variables, 61, 76, 107, 135

overloading, 32, 48
of operators, 120, 122

parameter
actual, 45, 49, 135

formal, 45, 49, 61, 135
formal, declaration, 47-48, 62-68, 76
input, 44, 81,125
output, 45, 61
< passing, 39, 63 _
parentheses, 26, 33, 38, 42, 79, 120, 123, 125
power flow, 87, 128, 132, 134, 135
power rails, 128, 132, 134

pre-emptive scheduling, 110-17
of tasks, 110-17
of transitions, 94, 95, 96, 87



program, 14-15, 19-20, 76
communication, 15-18
compliance, 23
declaration, 39, 61, 68,76, 108
retentive, 78
scheduling, 116-17
samaphore use in, 71
SFC structuring, 77

program organization unit, 44, 61
compliance, 21
declaratior, 39, 44
initial state, 77
umps in, 132
networks in, 128, 130, 135, 138
scheduling, 110-17
SFC partitioning of, 77
state, 77

programming, 15, 18-20, 134, 138
real iteral, 27-28

resource, 14-15, 76
communication, 18
declaration, 107-8
global variables in, 107
intialization, 15, 39
programming, 19-20
starting and stopping, 15, 110

retertive data
deciaration, 38-40, 76, 137
in function blocks, 63
in steps, 78
initial value assignment, 42
inttialization, 3%
keyword, 40
type assignment, 40-41

return, 120, 121, 124, 125,132 -
rising exge, 63, 65, 72, 74, 110
rung, 83, 134

giobal, 107

of actions, 83

of declarations, 39

of function biock instances, 61
of networks, 128

of steps, 77

of transitions, 80

selection
functions, 54, 59
statemants, 126

= 216 =

ANNEX G - Index (continued)

EC DIS 11313



EC DIS 11313 =217 -

ANNEX G - Index (continued)

semantics
instruction List (IL), 119-21
Structured Text (ST), 122-27

semigraphic representation, 9, 63, 109, 128, 128

sequential function chart {SFC)
activity flow, 128
compliance, 104
converpence, simuifaneous, 83
divergence, selection, 84, 85, 96, 97
divergence, simultanecus, 83
elements, 14, 70, 71, 77-92, 118, 127, 128
elements, compatibility of, 104
efrors, 93
evolution, 83-103
programming, 19

signai flow, 128, 138

single data etement, 36, 37-38

step, 77-78
action association, 86
activation, 93
active, 77, 78, 88, 93
deactivation, 77, 85, 83
duration, 83
elapsed time, 77, 78
flag, 77,78
inactive, 77, 134
initial, 77, 78, 63
initialization, 78
retentive, 78
state, 77, 93, 94, 95, 96, 97, 100, 101

structured data type, 61
declaration, 33-34
intialization, 34-35

_ usage, 36 ,

“structured variabie, 38, 44

access path, 107
assighment, 125
declaration, 41
initiaiization, 42-43
step elements, 77

subscripting, 38
array initialization, 42

symbolic representation, 37, 40

synchronization
interprocess, 127
of function biocks, 110-17



’-

syntax, 14
documentation, 22
stepAransition, 83

task, 14-15, 110-17
declaration, 107-2
programming, 19-20

TIME data type, 30-32, 77, 78, 88
default initial value, 34
function blocks, 74
functions, 60

time literal, 28-30

time of day
data types, 30-32
default initial value, 34
functions, 60
keywords, 30
literals, 29-30

timer, 74-75

transition, 77, 79-82
clearing, 93, 101
ciearing time, 93
condition, 77, 79-82, B3, 83
enabled, 93, 100
evaluation, 94, 85, 96, 97
priotity, 94, 95, 96, 97
symboi, 93

type conversion
functions, 49, 50-51

~ underline character, 25, 27, 48

unsigned integer, 128
data types, 30

.2187@

- ANNEX G - Index (continued)

ECDIS 11313



IEC DIS 1131-3 - 218 -

ANNEX G - index (continued)

variable, 37-43
declaration, 47-48, 62-69
usage, 26

WAIT function, 83, 127
warm restarl, 38
wired OR, 138



~ 220 - ECDIS 11213

This fopic & undar consideration for kiture standardization.

- END OF PART 3 ~



