EUROTHERM

THE RESOURCE MANAGER

A Guide to Tuning the

Resource

User Guide

(&) CoOPYRIGHT MCMXCIV EUROTHERM LIMITED

All rights strictly reserved. No part of this document may be
stored In a retrieval system, or transmitted, in any form or by
any means without prior written permission from Eurotherm
Lsd

HA024105C003 2 wror I




CONTENTS

Contents
I Scope 5
2 Related Docaments 5
3 The Resources 5
A1 Global o o e 5
3101 Shared Memory . . . . . .. .o e e e 5
30 Tasks e e 5
391 The OOT e 5
899 The PSE . . e e 8
828 OMS e 6
324 Message Quetle . . . ... Lo L §
4 What Happens 6
5 How to Tune 7
5.1 Global © . . oo o 7
5.1.1 Shared Memory . . . . . . . L 7
519 The OO . e e e 7
5.1.3  The PSS . . . e 7
B  OMS e e ]
h.1.0 0 MessageQuene . .. L L L e 8
6 How to Determine What to Tune 8
8.1 The OOT Fable . . . . . o e 8
6.2 OMS Bulfers . . . . . e e e e 8
6.3 OMS Queue Enfries . . . . . . . L L e 9
7 The Loader 9
8 The TASKs 9

HAG24105C003 2

VATEES



CONTENTS

g 'Fools 9
91 reslSt L L L L i0
9.2 resviT L L L il
9.3 resunld . . . 12
G4 MSUSDY . . 1
10 An Example Tuning Strategy 14

HA024105C003 2 A GUIDE 7o TUNING THE RESOURCE 3



CONTENTS

VERSION HISTORY

Version Date Changes
1 March 10, 1994 Initial 1ssue
2 | December 20, 1994 | Update for Version 2.2

HA024105C003 2

FERRE

CURTEE EICY



SCOPE

1 Scope
This document describes how a RESOURCE { Version 2.2 ) may be tuned, and what criteria should be used
to determine what should be tuned.

The document is fundamentally concerned with tuning the Communications Messaging Services { CMS } of
the RESOURCE, and in particular with how to tune the RESOURCE for the messages to be generated by ail
the VAR REFERENCES within the network of RESOURCEs.

Tuning is not a sequential, but an iterative process, especially as the funing of one resource may affect the use
of another. it will be necessary to read this document in a similar fashion, as a single pass will not be sufficient
to grasp the nter-relation of resources.

Cioarse tuning is fairly easy to do and will probably yield results guickly. On the other hand fine tuning 15 a
complex and time consuming process and should only be undertaken if there is seen to be a real need.

2 Related Documents

1} HA024105C001 A Guide to Var References
2] HA024105C002 A Guide to the Hescurce Debugger
HA024105C004 A Guide o Taning CMS

3]
4] HAG24105C005 A Guide o Setting Up CMS Networks
7]
]

HAG214105C007 A Guide to the Resource Loader

b

[
2]
[
[
[
[

6] HAG24105C008 A CGuide to the Resource Task

3 The Resources

There are resources reguiring tuning at two levels
¢ The global resources, ie those that affect all TASKs.
e Private TASK resources.

3.1 Global

3.1.1 Shared Memory

When the RESOURCE is loaded [3] some shared memory is allocated for the database pius the TASK resources.

3.2 Tasks
3.2.1 The OOT

Each TASK has a fixed size Qutstanding Operation Table (OOT), the number of entries in the 00T deter-
mines the maximum number of outstarsdmg oporatlons { Read Ternplate, Read/Write or Service ) on VAR
REFERENCEs ( including dynamic ones ) within the TASK.

For each of these operations there is a timeout. This is the time allowed ( in milliseconds ) between issuing
the request [ allocating the OOT entry } and receiving the response.

HAN24105C003 2 A GUIDE ToO TUNING THE RESOURCE 5

CUERPREE

Tl

CEFEEEYT



WiHaT HAPPENS

3.2.2 The PST

Each TASK has a fixed size Pending Service Table (PST}), the number of entries in the PST determines the

e

maximurm number of pending service requests from VAR REFERENCES ( including dynamic ones ) o this
TASK.

3.2.3 CMS

The (M8 resources consist of private buffers and queue entries, For a fuller description see [3].

3.2.4 Message (Juene

Each TASK has a message queue into which it buffers all messages received from CMS so that they are processed
at the appropriate time during the TASK execution cycle, ie start of TASK, end of TASK and between RLD
execution. This gueue is of a fixed length and so effectively throttles the number of messages that may be
processed at one of these stages in the TASK execution,

4 What Happens

This section summarises the processes involved from the time a VAR REFERENCE generates an initial message
request to the time the reply is received or the request is aborted.

The VAR REFERENCE requires an operation to be performed ( Read Template, Read/Write or Service
j and thus requires a message to be sent.

A buffer from the OMS is requested which is large enough to hold the message, il no buffer is available
then the operation has failed.

An entry in an Qutstanding Operation Table (OOT} is requested for this message, if no entry is available
then the operation has failed. T ' e

The message is composed and then issued to the CMS to send

The ({MS determines if the message can be delivered to a local TASK, if it cannot then the CMS requests
another of its own buffers into which the message is encoded in Universal format and the initial buffer is
[reed.

The (:MS then attempts to deliver the message to the target CMS ( which will be the local router TASK
if the message is in Universal format ).

If there is a free input queue entry on the destination TASK then this is allocated to the message, and
thus the message is delivered. If no queue entry is available then the message is held locally on a waiting
queue until an input queue entry becomes available.

If the message is being delivered by routers then eventually the message is either delivered to the des-
tination TASK input queue by the router local to the destination TASK or the message is lost il if 1s
not possible to deliver it. This last router will deliver the message to the destination process in universal
format and the process wiil then decode it before delivering it.

The destination TASK then reads its input queue. It then parses the message and gets one of ifs own
('MS buffers large enough to hold the reply. Once it has composed the reply then it sends the response
back the way it came via the same mechanisms and frees the initial buffer. If the TASK cannof get a
buffer large enough to compile the response, or all its buffers are in use then the request is ignored. The
responding TASK does not require an OOT entry.

The originating TASK then receives { eventually ) the response and is able to free its OOT entry. If the
reply is not received within the timeout period specified by the OOT entry then the response is lost.

6

HA024105C003 2

H
H
#



How To TUNE

5 How to Tune

fach rescurce has a set of default values for all the tunable parameters, which should be sufficient to get most
RESOURCESs up and running.

This section describes all the tunable resources and haow to tune them [ §6 describes how to determine what
needs funing J.

3.1 Global

5.1.1 Shared Memory

The defaalt shared memory is oniy 20000 bytes and is insufficient for many applications. During tuning it is
hest to allocate as much as is possible, say 500000, and make the shared memory size the last thing tuned,
unless it 18 causing a probiem using so much excessive memory.

The msuspy tool { §9.4 ) determines how much mwemory has been used, and may be used as the argument to
the loader [5].

5.1.2 The QOT

By default two QOT entries are allocated for each VAR RETERENCE in each TASK, this will ensure that
there will always be enough QQT entries. No OOT is allocated to a TASK withcut any VAR REFERENCES.
If there are large numbers of VAR REFERENCES and it is not envisaged that there will be outstanding
operations on all of them at the same time then the number of QOT entries may be reduced, saving on
memory.

By using the -oot option on the TASK [6] the number of QOT entries for all TASKs may altered from the
defauit.

The default timeouts for VAR REFERENCE operations are :

Read Template | minute
Read b seconds

Write 5 seconds

These values may be altered by use of the -tot, -tor and -tow [6] opiion for a TASK { except the router }.

5.1.3 The PST

By default one PST entry is allocated for every service in a TASK, this will ensure thal there are always
sufficient PST entries for all services to be pending. No PST is allocated if no services are provided by the

TASK.

By using the -pst option on the TASK [6] the number of OOT entries for all TASKs may altered from the
default.

HA024105C003 2 A GuE TO TUNING THE RESOURCE 7

CUTER Y

iz
|5




How To DETERMINE WHAT 70 TUNE

By default a buffer distribution of “4:256 4:1024 4:4096” is allocated for a TASK. { inciuding the Resource
debugger {2]) . Tor a full description see [3].

5.1.5 MessageQuene

By defauli a message queue of length 32 s allocated.

6 How to Determine What to Tune

A RESOURCE and its TASKs may be tuned $o according to several criteris :

¢ To reduce memory usage.

e To reduce delays,

In general a balance will have to be struck.

6.1 The OOT Tabie

Unless there are a large number of VAR REFERENCESs or memory is extremely tight, there ought not to be a
reed to reduce the number of QOT table entries. If the number of entries has been reduced then it 18 possible
to inspect a RESOURCE to determine if requests have not been issued because of a lack of OOT entries (
resvrf §9.2 ). If Dynamic VAR REFERENCEs are used within a TASK then it is possible that the number
of OOT eniries may not be sufficient and therefore the number may he increased.

In general it ought not to be necessary to reduce the timeouts unless it is irportant to determine the non-
arrival of a response very quickly. If however the RESOURCE has been tuned to reduce memory usage to the
minimum even to the extent of imposing delays on messages then it may be necessary to increase the thmeouts
to allow for resources to become free to deliver responses. It is possible to determine if any TASK is timing
out { resvrf §9.2 ).

6.2 CMS Buffers

The distribution of CMS buffers is the most complex area of tuning and several iterations may be requirad to
obtain a very fine tune.

Ruffers are required for several reasons :

¢ Because a TASK has VAR REFERENCEs.
o Because a TASK is required to respond to debugger messages during a debug session.

¢ Because a TASK is required to respanse to VAR REFERENCE requests frormn other TASIs

3 HA024105C003 2




THE LOoADER

The first reason is easy to identify and to quantify. A tool { reslist §9.1 ) may be used to determine what
luffers are required to service all VAR REFERENCEs, This however takes no account of where the TASK
expects those VAR REFERENCEs to be found. If it is to be found inside itself then no buffers are required
for Read or Write operations. If only Read operations are required the maximum buffer size for handling that

VAR REFERENCE may be less,

The second reason is easy to eliminate if that RESOURCE has no embedded debugging and the ST has not
been compiled with any debug option. H however debugging is required then a buffer supplernent should be
added i the TASK is normally tuned finely. An additional distribution such as “4:256 4:1024” would be good
enough for simple message sequences. An alternative approach if memory 1s {imi ted and in particular if it s
intended to debug many TASKs is to add CMS global buffers instead.

The third reason is altogether more difficult and to tune before running would require knowledge of what
requests are expected. If a TASK is known to be expected to respond to particular VAR REFERENCEs then

a buffer distribution could be caleulated from the source RESOURCEs using the tools { reslist §9.1 ). In
general it would be necessary to run the RESOURCE and refine with the aid of the tools the buffer distribution

&

of such TASKs. In the first instance just adding a fixed supplement to all TASKs expected to respond to such
requests might be sufficient.

See [3] for a discussion on how to choose buffer distributions.

8.3 CMS Queue Entries

See [3] for a discussion of tuning CMS process queue entries.

7 The Loader

See [5] for a full discussion of the loader and the options that apply to it which permit tuning.

8 The TASKs

See [6] for a full discussion of the TASK and the options that apply to it which permit tuning.

9 Tools

The following tools are supplied with the RESOURCE fo assist in tuning and debugging. There are a aumber
of tools { specifically cusears, cmsspy and cmsedit ) supplied with CMS to assist in the tuning of CMS (3.

Each of the tools also accepts the -y <Key> option if more than one RESOURCE is loaded under unix.

HA024105C003 2 A Gume To TUNING THE RESOURCE 9

%
i
o

CEETTT



TooLs

Buffers for VarReferences CONLY :

Recommend : task taskl -i 2:1i2
Recommend : task task2 -1 2:112
Recommend : task task3 -i 2:1888
Recommend : task task4 —-i 2:1668
Recommend : task taskb -i 2:480
Recommend : task task6 -i 2:480
Recommend : task task7 -i 2:3696
Recommend : task task8 -i 2:386986

Figure 11 Example output from reslist of recommended buaffers

Buffers for VarReferences ONLY :

TASK : taski ;

progi.Remote: ReadTemplate = 397{7}/164, Read = 480/677, Write = 807/361
Recommend : task taski -1 2:818

Figure 2: Example output from rashist for a single task

9.1 reslist
resiist accepis the following options

<TaskName> Only display this TASK, default is all TASKs.

-buffer Displays recommended buffers for all TASKs with VAR REFERENCEs. The resulting buffers are
sufficient to deal with the worst possible case of outgoing messages.

-trace The addition of the —trace ( with -buffer ) option displays the calculations made for each VAR
REFERENCE to allow the recommendation to be tuned according to additionai knowledge about the
VAR REFERENCESs.

-st List cut the 8T 1n a structured form.

-gad List of the ST with its GADs in a flattened form.

Figure 1 shows the output from reslist -buffer
Figure 2 shows the output from reslist task! ~buffer -trace

This TASK has a single VAR REFERENCE in PROGRAM “progl” called “Remote”. From the output we
conclude that :

o if the VAR REFERENCE is only being read then a buffer of 490 bytes would be sufficient instead of 816.

e reslist has deduced that 397 bytes would be required to for a ReadTemplate if the VAR REFERENCE
to be read has a reference string of the same size as one required to read the template on “Remote” from
another RESOURCE. This may be an under-estimate ( hence (7) ).

o The TASK where the VAR REFERENCE is located requires buffers of 164, 677 and 361 bytes to compose

replies.

All the buffer figures assuine that the messages are sent in Native format. When a message has to be sent via
a router then the message in encoded into Universal format whick will be no larger, however a supplement of
ap 48 bytes may be required.

10 HACG24105C003 2

4




Toous

9.2 {}esvrf;

This tool displays the diagnostic information for VAR REFERENCEs. 1t may be used on loaded or unloaded
TASKs {§9.3}.

It may be invoked by one of twe methods.

resvrf rescurce To display all statistics for all TASKs

resvrf task <TaskName> to display statistics for an individual TASK.
Four seis of figures are obtainahble from within resvrf with the following options :

-diag diagnostics for all VAR REFERENCES ( Figure 3)
-oot size and usage of the OOT { Figure 4 )

Alist alist of all VAR BEFERENCES and the current values of all properties. { Figure 5 )

-pst size and usage of the PST { Figure 9.2) ;
-hrief Produce a short form of the above { ~1ist and —diag only ).
-full Produce a fuller for of the above ( ~1ist only ). i

The most useful of these for tuning is the ~diag opiion { the default ). If a statistic 1s not displayed then its
value 1s zero. The statistics useful for tuning are :

MatchTimeout The number of times a Read Template timed out.

ReadTimeont The number of times a Read timed out.

WriteTimeout The number of times a Write timed out.
ServiceTimeout The nomber of times a Service timed out.

OOTFull The number of times no QOT entry was available. This will only occur when the maximurm number
of OOT entries has been limited.

NoBuffers The number of times an operation failed because the CMS could not provide a huffer large enough.

Figure 3 shows a samplie output from resvrf task Q:askf -diag. It could be deduced from the output that
there have been 1586 successful writes, I write which {imed out, 1 read template which completed, 1 which
tirned out, and 1 in progress. The implication is that there is a single VAR REFERENCE on this TASK to a
TASK that has hecome unreachable.

The line giving the Requests summary is a sumn of the form
keq = Res + OpErr + StatErr + Timeout + Cancel + Unsuc = Complete
where

Req The total number of requests made.
Res The total number of responses received,

OpErr The total number of operation errors. { InProgress + BadState - OOTFull + NoBuffers 4 ParselMail
+ ResolveFail ).

HA024105C003 2 A GuUInE To TumiNG THE RESOURCE 11



Toons

VAR REFERENCE Diagnostics for "4aski"

RegMatch = 3
RegRead = 1
Reglirite = 1587
ResMatch = 1
ResRead = 1
ResWrite = 1588
MatchTimeout = i
WriteTimeout = i
Summary
Incompilete requests = i
Requests = 1690 = 1587 + 0 + 0+ 2 + 0 + G = 1588

Figure §: Example ontput from resvrfl

00T Diagneostics for "taski”

Size = 10
Free entries = iG
{ut entries = 0
Timeouts
Template = T#im
Read = Tibs
Wirite = T#bs

Figure 4: Example outpui from resvrf

StatErr The total number of status errors. { MatchError + WriteError + readError + Servicebirror ).
Thmeout The total number of timeouts.

Cancel The total number of cancelled operations.

Unsue The total number of thruing operations that were unsuccessful.

Complete The total number of operations that have run to completion.

9.3 resunld
resunid can be used to unload a whole RESOURCE or individual TASKs. It operates in one of two modes.

resunld resource Unload all TASKs in the RESOURCE and the RESQURCE database.

resunld task <Name> Unload TASK <Name> only.
resunld also accepts the following options
-quiet Suppress informational messages.

9.4 {msuspy;

P

The msuspy tool can be invoked to determine how much shared memory has heen used. This may then be
used as the ~size parameter to the loader.

Figure 7 shows sample output from msuspy -g resource showing a sized RESOURCE.

12 [TA024105C003 2




TooLs

VAR REFEREKCE Listing for "taskil™

[3.0.38]

“ref = ‘progl.v’
“resclution = 1 (Ultimate)
“scan = T#Gs
“timeStamp = DTRIOS3I-03-03-14:38:06
“gqtimeStamp = (T#0ms
“status = 0 {0Ok)
“readStatus = 0 {0k)
“writeStatus = 3 {Undefined)
“servStatus = 3 {Undefined)
“dontWrite = §
“propertyProtect = 1
“propertyProtect = 1

"newRead = 1

“relax = 0

“coherence =1

“coherent = 1
“detectDataChange= 0
“dataChanged =0

Figure H: Example output from resvrf

PST Diagnestics for 'tazkl”

Size = 7
Free entries = 7
Jut entries = 0

Figure 6: Example output from resvsf

The Shared Memory Spy Tool, Version 1.2
{c) Copyright 1992, 1993, 1994 Eurotherm Controls Limited
Rescurce shared memory
26928 bytes starts at 0x120060060
0 bytes free from 0x12006930
26928 bytes used

Figure 7: Example cutput from msuspy

HA024165C003 2 A GUipE To TuNING THE RESOURCE 13

TEER

CUE TR W

CERERET T



AN FEXAMPLE TUNING STRATEGY

10 An Example Tuning Strategy

The example tuning strategy is a coarse tune but should yield good results provided the Tuns are representative.
If at the end of this the memory usage is too high then a balance between speed and size will have to be struck
or a fine tune made.

Load the RESOURCE,

L]

e Use reslist —buffer to determine the initial set of buffers for all TASKs.

Run all RESOURCEs for a representative period.

@

Use cmsspy [3] to inspect all TASKs and eliminate any unused buffers.

- Inspect the VAR REFERENCE statistics resvrf resource. For all TASKs showing a NoBuffers
statistic use cmsspy [3] to inspect the buffers. Add some buffers of maximum size to ali these

TASKs.

e Run all RESOURCEs for a representative period then inspect each RESOURCE using the cnsears and
emsspy tools (3], For each TASK holding up delivery of buffers add queue entries with cmsedit {3].

CUERSHE

=
I
&

With all TASKs ( suitably modified ) loaded size the memory with msuspy.

&

WOOOM

14 HA024105C003 2



