EUROTHERM

THE RESOURCE MANAGER

A Guide to Var

References

User Guide

© CoPYRIGHT MCMXCIV EUROTHERM LIMITED

All rights strictly reserved. Ne part of this document may be
stored in a retrieval system, or transmitted, in any form or by
any means without prior written permission from Eurctherm

Ltd
HA024105C001 2 | icoswmire |

VERSION HISTORY

Version Date Changes

1 March 10, 1994 Initial Issue

2 | December 20, 1994 | Update for Version 2.2

HA024105C001 2

CONTENTS

Contents
1 Scope 4
2 Related Documents 4
3 Introduction 4
4 Var Reference 4
4.1 Specifying the Hemote Data Objects« . . . b
417 Simple types . . L o 4
G102 ATTAYS . . . G
4.1.3 Function Blocks oL 7 F
4.1.4 Services . . . L]
4.1.5 BEnumerallons L. L e 9
4.2 Reading the Remote Information oo 10 :
4.3 Reading Remote Data L L 0
4.4 Writing Remote Daba L it
4.5 Requesting Services oo e
4.6 Multiple Qutstanding Operations0 L i1
47 Thruing o e 12 !'
4.8 Messaging ReSOUIces L e 12
4.9 Examining the State of a Var Reference oo 13
4.10 Timeouts and Failures Lo 13
431 Summary of Properties _ . .. oL L 14
5 Diagnostic Function Block 14
6 Performance 17

HA024105C001 2

A GuUIDE T¢ VAR REFERENCES 3

VAR REFERENCE

1 Scope

This document, provides an 1" programimer’s guide to the use of VAR REFERENCES in the RESOURCE (Version
2.2).

2 Related Documents

[1] TECI131 Programmable Controllers Part 3 Programming Languages First Edition 1993-03
[2] HA024105C003 A Guide to Tuning the Resource
[3] HA024105C005 A Guide to Setting Up CMS Networks

3 Introduction

VAR REFERENCEs are a Furotherm Control extension fo the TECT131-3 standard [1] to provide access to remote
data on other Eurotherm Controls products.

4 Var Reference

[ivery FUNCTION_BLOCK or PROGRAM can have a reference declaration section. All data specified in this section
is remote data, where remote means that it has its defining definition somewhere other than in the current
bioek, though it may well be in the same RESQURCE or indeed TASK. The reference section is denoted by the
keyword REFERENCE appearing after the keyword VAR. Note therefore that references are internal to the
block they are defined in.

For example

PROGRAM exi

VAR
writeflag: BOOL;
id: STRING;

END_VAR

VAR REFERENCE
remflag: BOOL;
remid: STRING;

EXND_VAR

has a reference section which contains two remote objects remflag and remid.

Any object may be declared to be a reference, from simple variables of any type, to arrays of any type { except
arrays of FUNCTION _BLOCKs), to FUNCTIGN_BLOCKs.

References have a set of “properties” which are predefined built in variables. Properties may be agsigned or
read or both. Properties cannot be wired to. Properties are used to control and monitor the reading and
writing of data via the reference.

The first stage in accessing remote data is specifying where it is and then matching it to the local data. H this
operation is successful then the remote data may be read and/or written.

4 HAH24105C001 2

@
e

FEIET I

Vakr REFERENCE

4.1 Specifying the Remote Data Objects

A VAR REFERENCE has an associated string, the ref string. This is set by assigning it from within the ST
PROGRAM, for example

remflag”ref := ’Resi:pidi.in’;
or at cold start, for example

VAR REFERENCE
remflag: BOOL { ref := "Reslipidl.in’} ;
END_VAR

The = tells the 8T compiler that the next name is a “property” of a VAR REFERENCE object. Property names
are predefined, and the ref property is the reference string. Any ST string or 5T string expression may he
assigned fo it.

5
2

A property called ref can be used to read the lasi set reference string.

VAR REFERENCEs may be categorised as either SIMPLE or COMPLEX. A SIMPLE VAR REFERENCE is one that
references either a simple type or an ARRAY of simple types, all other VAR REFERENCEs are complex. This E
implies that a FUNCTION_BLOCK with a single INPUT, and no INTERNALs, IN_OUTs (and INPUT_CUTPUTs)
QUTPUTs or SERVICEs 1s COMPLEX.

4.1.1 Simple types

For a simple VAR REFERENCE, that is one which is a simple built in ST type (e.g DINT, BOOL, LREAL) the
reference string must specify the full hierarchic path (or VAR_ACCESS name) to the object, prefixed by an
aptional RESOVRCE name and *:". The syntax 1s ;

simple_abs_ref_string ::= [resource_name] *:’ nams { ’." name %
(using the usual BNF notation where [J means an option, and {} means 0 or more of the enclosed}. name is

any valid ST name.

The resource_name is the name of a remote RESOURCE. If omitted the reference is to something in the local
RESOURCE. The lisi of names separated by . is the full path to the remote object. So in the above example Resl
is the name of the remote RESOURCE, pid1 is a block in the remote RESOURCE which contains a variable in.

For local objects which are descendants of the instaniiating biock a relative path name can be given. The
syntax is

simple_rel_ref_string ::= .’ name { ’.’ name }

When a reference string is assigned the RESOURCE will query the specified remote RESOURCE for information
about the specified object. The information returned is

¢ The addressability. It is possible to address this object.
e The type of the remote object (DINT, LREAL etc.)

¢ The mode of the remate object (INPUT, QUTPUT etc.)

HA024105C001 2 A GUIDE To VAR REFERENCES 5

Var REFERENCE

The size of the remote object, which will be 1 for simple types and the total number of elements for an
array type.

e A fast address for the remote object.
e The TASK that owns the remote object.

e Any write protection.

In order for reads and writes to be performed, the remote data must be addressable. T addition the type and
size must match the type, size and mode (1.e INPUT, OUTPUT, internal, IN_0UT) of the local VAR REFERENCE. In
fact for simple types (i.e VAR REFERENCEs that are not blocks) the mode of the remote object must be internal,
since the VAR REFERENCE is itself internal.

4.1.2 Arrays

For arrays of simple variables, as well as the type and mode matching, the total number of elements in the
remote object must match the namber in the local object. So, for example a remote 2 by 10 array wounld
match s local 16 by 2 array. In general a remote array with 6 dimensions i1, 14, 3,42, 75, 4s atches a local
one with dimensions j1, jo, ja. ja, 5, j6 provided 4y # 4y # iy 1 % 5 # 95 = 1 * Jo % fa % Ja * j5 = js. Local data
ab position xy,xe, T3, Ta, 5, ve would be the remote daia al position yi, 2, ¥5. ¥4, ¥s, ¥e if the same position
has been specified when the array is “flattened’ into a one-dimensional array. Since ig and jg are the fastest
varying dimensions this means

v +igx(my— L ddgslwg — T ddgn{aa—l+izgs{am— 14+~ =y +le* (s~ 145k (pa—1+
dax (ys— 1+ jaw (yo — 1+ jax (3 — 1))

With the constraints for the array indices (e.g O < zg < ig) this gives a unique mapping between one array
and another.

It is also possible to match to single elements of an array, or to the whole of a sub-array, in exactly the same
way as the Structured Text compiler allows array assignment.

Fer example given a remote array declared as

array: ARRAY[1..10,1..107 OF DINT;

and the local declaration

VAR REFERENCE
matchall: ARRAY[1..10,1..10] OF DINT;
matchpart: ARRAY [1..101 OF DINT;
matchele: DINT;

then the following would be valid.

matchall“ref := ’Remote:prog.array’
matchpart ref := ’'Remote:prog.arrayl[2]’
matchele ref := 'Remote:prog.array[i,2]’

So it is possible in the reference string fo index into remote arrays, and have a successful match provided the
dimension of the local object matches.

Note that a local array object can only have a single reference string (not an array of them).

6 HAG24105C001 2

|3

SrEEs ¥

WAR REFERENCE

Figure 1: A reference to a remote block

Resource Remote _ _
Resource Local

Pregram Prog

Instance ref

Instance remi .
of type local

of type remote
which is a

-
vrey

4.1.3 Function Blocks

A VAR REFERENCE can also be a FUNCTION_BLOCK. The reference string then specifies one or more remote data
objects that are matched to the INPUTs, OUTPUTs and in-outs of the local object. In the simplest cage where
only one remote object is specified, the Temote object must be a block with parameters which match the local
abject’s parameters in name, mode, type and size except thai a remofe internal may maich a iccal INPUT,
DUTPUT, in-out or internal. In other words each parameter of the remote object is individually matched to the
local object’s parameiers by name as if it were a simple type. {The remote block may have extra parameters
that are not matched). The local block is then an image of {possibly part of) the remote block’s data.

The diagram in figure 1 should help understanding of the example shown below. Given a remote block such as

FUKCTICN_BLOCK remote
VAR_INPUT

ini:LREAL;

in2: ARRAY[%..10] OF DINT;
END VAR
VAR_QUTPUT

outl: BOOL;

ignored: BOOL;
END_VAR

which was instantiated in & RESOURCE called Remote in a PROGRAM called prog as block instance remi, and a
local block definition of the form

FUNCTION_BLOCK local
VAR_INPUT

inl:LREAL;

in2: ARRAYL:i..10] OF DINT;
END_VAR
VAR_OUTPUT

outi: BOOL;
END_VAR

HA(G24105C007 2 A GUIDE TO VAR REFERENCES 7

YVarR BEFERENCE

then the following VAR REFERENCE

VAR REFERENCE
ref:local;
EED_VAR

vef := ‘Remcte:prog.remi’;

would match the ini, in2 and outd parameters, and would enable data to be exchanged via those parameters.
Of course by instantiating a local instance of remote all of its visible parameters may be matehed.

1t is also possible to specify a ligt of remote objects that are to be maiched to a local block, by using a special
syntax in the reference siring. Fully hierarchic names can be pui in a comma separated lists, or as a shorthand

{7 and '} are used to bracket comma separated lists of names which are then all taken to be relative to the
previous hierarchic name. For example the string

atb,z.e,f{1.%,1{m,nk}}

expands to the names

a.b, a.x.e, a.f.3, a.f.k, a.f.1.m, a.f.1.n

A local parameter must be assigned to each name in the resulting expanded list, for example

af{ loci := b, ¢ { 1oc2 := 4, loc3 := et}

means tha$ the local parameter locl 1s matched to a.b, loc2 to a.c.d and loc3 to a.c.a.

The full syntax of the reference string is

ref_string ::= simple_ref string | complex_ref_string

simple_ref _string ::= simple_abs_ref_string | simple_rel_ref_string

§

simple_abs_ref_string ::= [resource name 3 ’':’ name { ’.’ name }

simple_rel_ref_string ::= name ’.’ { ’.’ name }

complex_ref_string ::= complex_abs_ref_string | complex_rel ref string

complex_abs_ref_string ::= [resource_name] ‘:' [primary_name]
“{? alternate_names_list ‘}’

complex_rel_ref _string ::= ’.’ primary_name ‘{' altermate_rames_list ‘}’
alternate_names_list ::= alternate_pames { , alternate_names_list }

alternate_names ::= [hierarchic_name] ‘{’alternate_names_list '}’ |
final_name

final_name ::= local_parameter_name ’:=’ hierarchic_name

ol HA0241050C001 2

erpEEEr

o ATEE R

CERISETF

YVar REFERENCE

primary_name ::= name { ’.’ name }
hierarchic_name ::= name { ‘.’ name }
local_parameter_name ::= hams

resource _Iname | = name

The primary_name is the name relative to wiich all the foliowing list of names iz specified. If absent the
foilowing list of names is taken relative to the remote RESOURCE as a whole, (i.e the list of names must
contain the full path to the object). The { and } notation brackets a comma separated list of hierarchic
pames. Any name may iself contain a lst of snb-objects using the { and Fuotalion. Af the bottom level
the local_parameter name specifies the parameier of the local VAR REFERENCE thal is o be matched to the
remote name. Any parameters of the local VAR REFERENCE that are not explicitly assigned remote objects are
maiched {o parameters of the same name in the primary_name; if the [atter is absent this is an crror.

W
f

Duplicate local_parameter_names are not allowed, but duplicate remote names are, so it is possible to match
one remofe variable to two or more lecal variables.

For example

VAR REFERENCE
RP : RemPID;
END VAR
RemPID"ref := *Ri:a{ Sp := b,c{ Pv := 4, CGp := e}’

means that R1:a.b must match BP.Sp, Ri:a.c.d must match RP.Pv and Ri:a.c.e must match RP.Op. I RP
has an extra parameter X then it is matched to Rl.a X

4.1.4 Services

A VAR REFERENCE to a remote FUNCTION_BLOCK may also reference the SERVICEs of the remote black.

Any VAR REFERENCE which contains SERVICEs must match the remote SERVICEs exactly, le the SERVICE names
must mabeh, as must the names, types and order of all of the INPUTs and OUTPUTs to the SERVICE.

4.1.5 Enumerations

If a VAR REFERENCE inciudes a reference to an entimerated type then the only matching that is done is that both
are enurnerations. No attempt is made to validate the mateh beyond that. This means that if the enumeration
at the VAR REFERENCE is different from that at the remote end there is the potential to write an illegal value.

HA024105C001 2 A Gume 70 VAR REFERENCES 9

YAR REFERENCE

4.2 Reading the Remote Information

When a reference string is assigned to a VAR REFERENCE, the RESOURCE will work out the names of the remote
objects it needs to match to the local, and send (m one message).these.to.the remote RESOURCE. Various errors
may then occur. These may be found by examining thes ‘JAR REFERENCE s statu._,_})iopcrty, for example

IF ref~status > 1 THEE
(% an error of some sort *)
END_IF

The errors associated with matching are

s A syntax or other error in the reference siring
2 ~ 3 i
@ The remote RESQURCE iz not reachable.
¢ One or mere of the remote objects do not exist,
o The remote objects are owned by more than one TASK, and so cannoi be made o one reference.

s The remote objects do not match the local ones according to the rules specified above.

Once a match has been completed successfully a single read is issued fo ensure that the local copy of data
contains something valid.

4.3 Reading Remote Data

Once a reference has been maitched to the remote objects, data may be read. Thefscan proporty gets the scan
rate in milliseconds for the remote data. For example

ref scan := t#190;
or else at cold start

VAR REFERENCE
ref : local { scan := t#1i0 }
END_VAR

sets the scan rate for the reference ref to be once every 10 milliseconds This means that every 10 milliseconds
the RESOURCE will send a read message to the remote RESOURCE specified in the reference string to read all of
the remote data. When the reply comes back the local image of the remote data is updated. A scan rate of
zero means no reads are performed.

If, however, no reply is received by the time the next scan is due, no timeout occurs, and no message is resent.
(Timeouts are handled separately with a separate global value) . Thus specifying a very [ast scan time means
that the data will be read as fast as possible, being limnited by the rate at which the remote TASK responds and
the local TASK sends messages.

A scan is performed on each TASK Cycle where “Time now > Time of last scan + Scan time” (a scan time of
0 = oo 3. Therefore to perform as wadisthe scan time should be changed from 0 to a value < the
TASK cycle time and then reset to G on the noxt TASK cycle.

A property called scan can be used to read the last set scan rate.

10 BA024105C001 2

g

VaR REFERENCE

For FUNCTION_BLOCKs all data is read (i.e all matched OUTPUTs, INPUTs and in-outs) and placed in the locai
VAR REFEREHNCE.

Accessing the data of the VAR REFERENCE from ST always returns the last data read.

S

sdnay be read to deterinine if anyapwdat empoadssince the last time this property

ing of the property is a destructive operation.

The property,
was read. The

A write to the remote object is triggered by either assigning o it (if it is a simple variable) or calling it (11t s
a block) passing it INPUT parameters as usual. A write message is generated, unless a write message is alveady
outstanding. In this case a fag is set fo indicate that ancther write is required when the previous write is

acknowledged. In this way the latest local value is always written to the remote object. Note that writes can
only oceur at the rate ai which the remote TASK acknowledges them ie every assignment does not guarantee a
write.

I the VAR REFERENCE is a sinple variable or array all the focal data is sent (even if only part of an array has
besn written}.

E

If the VAR REFERENCE is a FUNCTION_BLOCK the INPUTs and in-oufs of the block are sent. Note that the in-outs
are not ther read back, so the value assigned to the local in-out will be the value written and will not reflect
any modifications made by the remote block.

In addition to the above constraints no data that is reported as write protected at the remote RESOURCE is sent
in a write message.

It is possible to prevent the writing of data by setting the;:ijhl_;%)‘ﬁfﬁ;j:;@fproperty. Once set no data will be
written to the remote objects until the property Is cleared. Once cleared the write will occur at the end of the
next TASK cycle, this is unlike a normal write where the write is issued at the time of the assignment. While
the dontWrite property is set no incoming reads will be accepted as they would overwrite the focal data.

4.5 Requesting Services

A SERVICE request is triggered by calling the SERVICE as if it was a local SERVICE. The SERVICE request copies
across to the remote SERVICE all of its data (including OUTPUTs) but the response does not include the INPUTs.

4.6 Multiple Outstanding Operations

It is possible to issue requests for an operation without waiting for a previous operation to complete. The
order in whichk the operations will be performed will be.

» Write the data.

¢ Issue the SERVICE requests. If more than one SERVICE on a VAR REFERENCE has been requested then the
order in which the SERVICEs are requested is not defined except if the first SERVICE is requested while
there is no other cutstanding operation. There may not be more than one cutstanding request on any
one SERVICE.

¢ Read the data.

HAG24105C001 2 A GUIDE 7O VAR REFERENCES 11

Var HEFERENCE

4.7 Thruing

If a VAR REFERENCE is made to another object that is itself a VAR REFEREECE then the nature of the operations
15 slightly different from the above. Templates are read and matched in the same way except that the resolution
of the data is also determined to be one of the following:

Ultimate This is the ultimate destination.
SingleReference The data resolves to a single VAR REFERENCE.

MultipleReference The data resclves to more than one VAR REFERENCE.

UltimateAndReference Some of the data is the ultimate destinaiion and some s by reference.

Only VAR REFERENCEs which are Ultimate or SingleReference are legal.

For the operations of writing or issuing SERVICE requests the data will be routed via every VAR REFERENCE to
the ultimate data or SERVICE, provided that each VAR REFERENCE involved is saiisfactorily resolved.

for operations of reading, data will be read from the first VAR REFERENCE in the chain whose data is newer
that that held hy the issuing VAR REFERENCE or else the read will be forwarded to the ultimate source of data.
This ensures that every read request (connections permitfing) results in a new more up to date set of dafa
being read, which is never more than twice the “scan out of date. If the/~ propextyProtect property of an
méelmedldie VAR REFERENCE is set to 0 then its effective scan rate may be adjusted To ensure that it reads
data Tast enough for all those VAR REFRENCEs that depend on if for their data.

TERETT

In all these cases it Is possible to have a run-time error where it is not possible to resolve the VAR REFERENCE
due to an intermediate VAR REFEREHNCE heing in a falled state. It also possible that an operation may not be
resolved because it is cyclic in nature. Both of these conditions are defected and will result in the setting of
the “status property and the operation status to unsuccessful. Such a condition is potentially recoverable
once the intermediate VAR REFRENCEs are altered { usually by changing “ref).

4.8 Messaging Resources

TASKs in a RESOURCE communicate by exchanging messages. Each TASK has a configurable number of buffers of
different sizes for messaging { see [2]). When a message is sent the smallest available buffer that will contain
a message is chosen to send it. In addition each message sent requires an entry in an Qutstanding Operation

Table (OOT).

Therefore in order for a TASK to send a message it requires 2 resources |

e a free buffer large enough to hold the message
e a free OOT entry.
1nn the event of no resources being available to perforn an operation, the operation is retried on the next TASK

eycle.

Messages to remote RESOURCEs, however, are routed to a “router” TASK. This TASK is responsible for finding
the route to the remote RESOURCE. (See [3])

12 HA024105C0601 2

YAk REFERENCE

4.9 Examining the State of a Var Reference

The status property of type DINT is available to defermine the current staie of a VAR REFERENCE. The status
property has the values and meaning shown in the following table —

State Value | Meaning

OK 0 Last operation succeeded

InProgress i Read, write or read template in progress

ParseFail P A reference string bad the wrong syntax

ResolveFail 3 Local names in bhe reference string did
not maich to the local object, or were
duplicated

NoResources 4 The TASK has no buffers left or QOT en-
tries 1o send messages with, or the ex-
panded reference string is too long

TemplateMismatch | b The read template did not match the local
one

Unreachable 8 The router was not reachable { loaded |

BadStatus 7 Fither a read template specified non ex-
istent, objects, or read falled to read the
data at the remote end {though ihe mes-
sage arrived}, or a wrlte failed to write
(for example if some block OUTPUTs were
being written)

NonUnigueOwner | 8 I a read template the remote objects be-
long to more than one remote TASK

SystemError G This should not be seen, if seen there 1s a
internal error in the RESOURCE

Cyelic 16 Operation currently results in a cycle

NotCoherent 13 Operation is currently not coherent

4.10 Timeouts and Failures

All read, write and read-template operations have built in timeouts, which may be altered at TASK load time

{ see [2]).

On a timeou$ the RESOURCE will automatically try to re-read the template of the remote objects again. This
is to ensure consistency If the timeout was because a remote RESOURCE was reloaded,

In addition to the above each message contains a checksum for the remote RESOURCE. This is stored in the
local VAR REFERENCE, and if a read or write returns with a different checksum to the local one then the remote
RESOURCE has been refoaded between the read or write. Again the remote template will be re-read.

The automatic re-read of templates in these circumstances means that a timeout 1s not visible to the user via
the status property, so two‘othcr)mperhes are dvanzia.ble o examme the success of read or write { and SERVICE
Y messages. These are(” ST DINTs. These have the following
states

State Value | Meaning

OK 0 Last operation succeeded

InProgress 1 Read, write In progress

JFailed 2 The last read or write failed

Undefined 3 No read or write issued with this ref string

Unsuccessful | 4 Onperation failed this time, but might work if re-attempted

HA024105C001 2 A GUIDE TO VAR REFERENCES 13

TREE

TR ¥R

TETRETTT

DiagNosTIO FUNCTION BLGOK

Read and write requests are essentially asynchronous. To shmulate synchronous operations a Sequential Fune-
tion Chart may be used, which tests the read/write status in a transition to determine when an operation
completed,

A synchronous write may be performed by writing the remote data in a step and transitioning out of the step
when the VAR REFERENCE has OK writestatus.

A synchronous read may be performed by setting the scan property from 0 o a positive large vaiue in a step
{so that only one read will be done), transitioning cut of the step when readStatus is 0K, and setting the scan
property to zero.

Normally, once a termplate has been matched successfully, there should not be communications errors.

FUNCTION_BLOCKs will be available whose QUTPUTs will give information on errors and the state of the various
communications interfaces, (see §5),

4.11 Summary of Properties

The following $able summaries the properties that a VAR REFERENCE has. It should be noted that access to
these properties is a function of the compiler used to generate the VAR REFERENCE code,

Property ST Type Mode Meaning Defanlt Value
ref STRING IN_DUT | Specifies the object(s) re- | 7?
ferred to (§4.1)
status DINT OUTPUT | Monitor any errors using a | {)
VAR REFERENCE ({§4.9)
writeStatus DINT DUTPUT | Monitor success or failure | 3
of the last write operation
(54.9)
readStatus DINT OUTPUT | Monitor success or fatlure of | 3
the last read operation (§4.9)
servitatus DINT QUTPUT | Monitor success or failure of | 3
the last SERVICE operation
(§4.9)
% TIME IN_OUT | The scan rate (§4.3) T#0ms
dontWrite BOOL INPUT | Prevent writing (§4.4) 0
iR BOOL OUTPUT | New data has heen read | 0
(§4.3)
timeStamp DATE_AND_TIME | OUTPUT | The date/time that the last | DT#1970-01-01-00:00:00
operation completed
qTimeStamp QTIME OUTPUT | The fraction of a second over | QT#0ms
“timeStamp
propertyProtect | BOOL IN_OUT | Prevent changing of effective | 0
scan rate { §4.7)

5 Diagnostic Function Block

There i1s a FUNCTION_BLOCK provided which provides diagnostic statistics about all the VAR REFERENCEs in a
TASK.

The FUNCTION_BLOCK will consist of counts of events (possibly fleeting } that are visible from ST and others
which are not.

The FUNCTION_BLOCK (Figure 5) will be of the form :

INPUTs :

14 EA024105C001 2

DraanosTio Funotion BLookr

OutputMode Change the mode of the DUTPUTs. Valid modes are :

0 Display running total
1 Display running total since last ZeroRelative

2 Display total in last completed CountPeriod
ZeroAbsolute Set all values to zero. This has s global effect on all instances of this biock.
ZeroRelative For mode I, OUTPUTs are now differences from now.

CountPeriod Period for mode 2.

QUTPUTs -

Reqguests Number of requests issued

ReqgMateh Number of read template requests issued
ReqBRead Number of read requests issued
ReqWrite Number of write requests issued

ReqgServ Number of SERVICE requests 1ssued
Responses Number of successful responses received

ResMatch Number of read template responses recelved
ResRead Number of read responses received
ResWrite Number of write responses received

ResServ Number of SERVICE responses recelved

State errors Number of times a VarRef falls inio an errored state.

MatchError Number of times a VAR REFERENCE falls info a error state after a read template.

ReadError Number of times VAR REFERENCE falls into error state after a read.
WriteError Number of times VAR REFERENCE falls into an error state after a write.
ServError Number of tirmes VAR REFERENCE falls intc an error state after a SERVICE.

Timeouts RBequest timeouts

MatchTimeout Number of times a read template has not received a response in the timeout period.

ReadTimeout Number of times a read has not received a response in the timeout period.

WriteTimeout Number of times a write has not received a response in the timeout period.

ServTimeout Number of times a SERVICE has not received a respouse in the timeout period.

Cancelled operations Number of times an operation was cancelled and another operation performed (this

is usually when “ref is set.

MatchCancel Number of time a read template request was cancelled.
ReadCancel Number of time a read request was cancelled.
WriteCancel Number of time a write request was cancelled,

ServCancel Number of time a SERVICE request was cancelled.

Unresolved operations Number of times an operation cannot be resolved (VAR REFERENCE to another

VAR REFERENCE).

ReadUnsue Number of times a read was unsuccessfully resolved.
WriteUnsue Number of times a write was unsuccessfuily resolved.

ServUnsuc Number of times a SERVICE was unsuccessfully resolved.

HA024105C001 2 A GUIDE 70 VAR REFERENCES

i

i
@
&
§

EMAGNOSTIC FUNCOTION BLOCK

Operation errors Var Rel operation errors. These are errors that prevent the request actually being sent.

OplnProgress Current operation still in progress on a VAR REFERENCE when another operation was
requested

BadState Vref was in the wrong state to perform the requested operation.

OOTFull The OQutstanding Overation Table {OOT) was full, and therefore the request was rejected.

Bach request requires a free entry in an internal table, the QOT, unti] the response is received or
the request terminates in an evror or timeout.

NMoBuffers No OMS buffers were available for the request.
ParseFail Syntax error in ref string. { The number of occurrences of the status ParseFail).

ResolveFail Error in contents of ref string. { The number of occurrences of the status ResolveFail }.

Status errors { Section 4.9)

Mismateh Template mismatch. { The number of occurrences of the status TemplateMismateh).

Unreachable Router is unreachable. { The number of occurrences of the status Unreachable).

BadStatus Status not OK in a received message. { The number of occurrences of the status BadStatus

ManyQwners A VAR REFERENCE resoives to items held owned by different TASKs. { The number of
oceurrences of the status NonlniqueOQwner).

System errors (Should not happen).

SystemError { The number of occurrences of the status SystemError).

Other counters ScanOverRun The number of times a scan(s} is skipped as the scan rate could not be

met.

Some status’s are not inciuded because they may be implied from others. These are :

Ok Thisis ! + ResMatch + ResRead 4 ResWrite

InProgress This is a fleeting condition that occurs once a request is issued. This is ReqMatch + ReqRead

+ ReqWrite

NoResources This is NoBuflers + OOTFail.

For every request that is issued one of the following will result :

A valid response.

An operation error, The request has not been sent.
A timeout. No response was received to a request.
The operation is cancelled.

The operation is unsuceessfully resolved.

A state error + status error. A response was received but the response actions were not completed due
Lo an error.

A state error + system error

Therefore :

16

HA024105C001 2

rrmEYERT

T}

S EEEL T

PERFORMANCE

Completed Requests = Requests — Uncompleted Requests

Completed Requests = Responses + Operation Errors + State Errors + Timeouts +
Cancellations + Unresolveds

State Errors = Status Errors + System Errors

Uncompleted requests consist of

e A single outstanding request per VarRef

s Raqussis aborted by changing the VarBel Ref string.

& Performance

The performance of VAR REFERENCEs { the throughpui of data } is dependent on a number of aspects -

e The guantity of data in the VAR REFERENCE.

e The structure of the ¥AR REFEREKCE.

b

e The operation { read/write) performed.
e The availability of TASK messaging resources.

¢ The route taken to reach the remote RESOURCE,

In general a greater throughput of data is achieved by having fewer VAR REFERENCEs with large amounts of
data in preference in large numbers of VAR REFERENCEs with only a small amount of data. Also operations
on ARRAYSs of data are more efficient than on the same number of individual items. FUNCTION_BLOCK writes
may be faster than reads as write protected data (§4.4) is not sent. For references to remote data which is
actually contained In the same TASK no messaging resources are reguired as no message is sent, the read or
write is performed directly. It is possible to tune a RESOURCE for its individual requirernents (see [2]).

—o()o +—

HA024105C001 2 A GUIDE TO VAR REFERENCES 17

PERFORMANGE

USINT—
EDGE—— >
EDGE——>
TIME- >

VaritelDiag

OutputMede
ZeraRelative
ZeroAbsolute
CountPeriod

RegMatch
ReqRead
ReqWrite
Regherv
ResMatch
ResRead
ResWrite
ResServ
MatchError
ReadBError
WriteError
ServError
MatchTimeout
ReadTimeout,
WriteTimeout
ServTimeout
MatchUnsuc
Readlnsuc
WriteUnsuc
ServUnsuc
ReadCancel
WriteCancel
ServCancel
OplnProgress
BadState
OOTFull
NeBuffers
Parsefail
ResolveFail
Mismateh
Unreachable
BadStatus
ManyOwners
SystemError
ScanOverRun

——>DINT
———>DINT
——=DINT
——>DINT
e DINTE
——>DINT
——- > DINT
—-——>DINT
——>DINT
> PN
e DENTT
————>DINT
——>DINT

——>DINT
——>BDINTF
——>DINT
——>DINT
F——>[UNT
——>DINT
——>DINT
—>DIN'T
——>DINT
——>DINT
——>DINT
———>DINT
——>DINT
——>DINT
———->DINT
——>DINT
——>DINT
——>DINT
——>DINT
——>DINT
——>DINT

Figure 5 Var References Diagnostics

18

HA024105C001 2

ST

T

L

TEOHEY T

