% Copyright {(c) 1990-1992, Eurotherm Limited

* File: cworks.tex
uthor: Jenny Oliver <jm00> and Mike Dillamcre <md00>
Pate: Wed Jun 3 11:00:23 BST 1952
Version: 1.0
Content ControlWorks Functional Specificaticn

$ Revision

THIS FILE IS PRESENTLY OUT FOR EDITING.
:~1.1 1.2 Jo00 92/06/24 14:48:29

WARNING: Any editing between above marker line and end of
rev. history marker line will be lost at next change.

1.1 92/06/24 14:48:21 jo00
date and time created 92/06/24 14:48:21 by 7000

O A2 o0 o\ o\ o o o P o ¢ % o\ o P o\ ¢

\documentstyle [eispec, epst] {article}

\newcommand{\epsffig} [3]{
\begin{figure} [tbp]
\centerline{\epsffile{#1}}
\caption{#2}

\label {#3}
} \end{figure}

\def\startchange{\begin{center}$\Downarrow\hspace{lin}\Downarrow\hspace{iin}"Dow
\def\endchange {\begin{center}$\Uparrow\hspace{1lin}\Uparrow\hspace{lin}\Uparrcws\
\begin{document }

\project {Group Configuration Tocl}
\docname {Product Specification}
\author {GCT Team)

\docno {HP024674}
\revision{2}

\doctype {Product Specification}
\controllingdept { ENGINEERING
\originatingdept { ENGINEERING

\signatoryone{Project Manager}
\signatorytwo{Technical Director}
\signatorythree{Marketing Director}

ectronicpath{wren: /wren2/gct/doc/specs/get_spec/get_spec. tex|
\stampbox .

\begin{distribution}
\for {Project File}
¥\for {Ian Hughes}

© RS WE

2\for {Keith Jones}

$\for {John Juer

>\ for {Bob Lewis
or {Brian Smith}

vend{distribution}

\controlsheest

\begin{history}

\rev{al {June 24, 1992} {Pre-release copy]

\rev{1l} [Sept, 1992} (Version 1}

\rev{2z} {March, 1933} {Added detail to sections on views and

editors ({\S}\ref{viewsgct}{£ff}); Updated to reflect changes since
project conception}

sRemember to update \revision{n} when new revision added
\end{history)}

%[Editorial Note 1:] Areas containing changes since the previous
svergsion are delineated by lines containing \startchange and \endchange.

[Editorial Note:] Issues that require resclution are denoted [{\em thus}:
\tableofcontents

\listoffigures

\pagebreak

\part {Project Overview}
\section{Scope}

‘s document is the product specification of the Group Configuration
Lol (GCT), a software tool providing a highly interactive,
multi-windowing, graphical interface for the creation and management
of control applications. This specification gives an introduction to
the control model supported by GCT, outlines some architectural
congiderations and provides an overview of how a user will interact
with the system.

\subsection*{Glossary Of Terms]

\begin{itemize}

\item {\bf IEC 1131} - The draft international standard

“rprogrammable Controllers’’. The term IEC 1131 is usually taken to
refer to part 3 of the standard : '‘'Programming Languages’’.

\item {\bf CDL} - Configuration Definition Language used to specify all
of a distributed control strategy. CDL is an subset~/ superset of the I

1131 ST language.

\item {\bf FBD} - Function Block Diagram graphical representation of
continuous control strategy.

\item {\bf SFC} - Sequential Function Chart graphical representation of
~quential control strategy.

\item {\bf ST} - Structured Text textual language to specify all
aspects of control strategy.

\item {\bf Application Entities} - the CDL components that make up an
application.

TR T

\item {\bf Block} - a Block is the unit of definition. That 1s

-~ say, it is an Application Entity that can be saved in a library,
ied between libraries, deleted from a

iibrary, etc.. A block may be a Configuration, Resource, Program,

Function or Function Block.

\item {\bf Sub-Block} - a part of a Block that can be edited

or viewed using its own editing paradigm. For example, the body
sub~-RBlock of a Function Block may be edited using an SFC whersas its
declaration Sub-Block may be edited by the template editor. A
Sub-Rlock may be a Transiticn, Step, Action, cold start or Wiring
expression, variable declaration, block body, etc..

\item {\bf POU} - A Program Organisation Unit ig the collective IEC 1131 tarm
for a Program, Function or Function Block. That is to say, a POU is a

block which is a sub-unit of a control strategy. A POU has a type

definition that can be instanced as many times as reguired within a

control strategy.

\end{itemize}

\begin{relateddocs}{lcm}

\bibitem{IECSpec} IEC DIS 1131-3 (Programming Languages for Programmable Contzrol

\bibitem{CDLSpec} CDL Specification (HP024674C307), J.W. Juer

\bibitem{ResSpec} HP024105: Resource Manager Release 1 Specification, J.W. Juer

\bibitem{IECJuer} IEC65A Control Languages - A Practical View, J. Juer ana I.Z.

\bibitem{GAPESpec} GAPE Preliminary Specification, M.S. Dillamore and J.J. Clive
‘hitem ResOver% An Overview Of The Resource, I.P. Hughes

,wnd{relateddocs

\section{Aims Of The Project]

\subsection{Development model}

The architecture of GCT is designed to be open and flexible so that
it is easy to add new editors, and it is easy to have teams of engineers
working independently and concurrently doing so.

The development plan will take advantage of this by following an
incremental evolutionary development model, in order to get immediate
user feedback and hopefully payback for the development. The aim will
be to produce releases of the product every 3 to 6 months. In order to
achieve thig each release will obviously not contain all the features
desired by marketing; discussion will have to occur to decide which
new features to add on the basis of the cost of adding them against
the payback. In addition any feature added must be reviewed against
its contribution to and compatability with the overall goals of the
project. Aiming for such a development cycle will also ensure
“1axibility in planning releases --- if a new feature is needed

jently it can be added in more easily to a non-monclithic plan that
caters for freguent releases.

\subsection{Release Schedule}

A provisional release schedule, based on the current project team, 1is
as follows ---

gin{minipage}{7in}
\pegin{tabular}{1l|p{0.9in}|p{2.9in}|p{1.2in}}

Approx Date & Version & Features added & Targets added \\ \hline

{November ’92} & {Demonstrator) \footnote{This version was demonstrated at
the Core Technical Conference, Lecnardslee, 1l4th December 1992} &
Graphical SFC;\newline

Free-format ST text edit;\newline

Rlock creation;\newline

Multiple windows;\newline

Cut and paste between windows;\newline

Multiple block libraries and projects;\newline

Simple block print &

FMC \footnote {Used FMC prototype build facilities, no download or
on-line from within GCT} \\ \hline

{April 93} & { Demonstrator} &

Core Protocol Suite (Resource) based on-line

communications\footnote{On-line comms depends upon a port of the Resource To Win
FBD Editor;\newline

Structured declarations (template) editor;\newline

Resource Editor\footnote{Includes download for this demonstrator only

_-- download will move to the Network Configuration editor}.

& PC3000 (LCM demonstrator\footnote{The LCM demonstrator is not a

"easable version of the PC3000, but an internal

wotestone}) ;\newline Production Orchestrator \\ \hline

{August ’93} & { Demonstrator} & & EPA LIN database
instruments\footnote{T1000, T100, T640} \\ \hline

{November '93} & {First Release\footnote{Release For Qualification}} & Ussr man
Professional application documentation\footnote{Application
documentation may be slipped a release if manpower is not available in time};\ae
On-line help;\newline

Instance Browser;\newline

Network Configuration editor;\newline

Configuration of operator panel\footnote{Subject to
approval of ECL Operator Panel project plans} default
displays\footnote{Including simple alarm management }; \newline

Ladder diagram editor\footnote{The Ladder Diagram editor could be slippec a
release if needs be};\newline

PC3000 Hardware editor;\newline

CDL import {default graphics generation for SFC and FBD) \ footnoce{For
CDL import to be useful the existing configuration tools (PS,

S\musCell and LINtools) must produce CDL output};\newline

Tested and defined interface for development of editors by other
group companies.& PC3000 (Production Version)\\ \hiine

~vch ‘94 & {Second Release} &

soreadsheet editor (SFC generation) ; \newline
Internationalisation Kit (8-bit character codes);\newline
Version and release control;\newline
Mimic configuration for operator panels. & A\ \hline

July "94 & {Third Release} &

TR W U

Trend and recipe configuration for operator panelg;\newline
‘rgtructured’’ ST Editor;\newline
~imulation.

\end{tabular}

\end{minipage}

\subsection{Metrics}

This section outlines some targets for GCT. The targets are gpecified in a
measurable form, however, the figures are to a large extent an informed
guess.

\begin{tabular}{||*{2}{p{2in}|}[*{3}{p{0.20in} |} [}\hline
Attribute &Scale & First release & Final release & Current products A\ \hline\zl

Tool Portability & Time to move to new computer and/or cperating system &
2 elapsed months & 4 elapsed months & 1 year (?) A\ \hline

Application Portability & Time to move a project or parts of a project onto anost
1 day & Automatic & Not always possible \\ \hline

ylication Encapsulation & Time to encapsulate part of an application for re-us
L day & 1 day & Not always possible \\ \hline

Extensibility & Time to add new editor &
x man months & x man months & 6x man wmonths \\ \hline

~

Modularity & Number of independent parallel development activities & 1 &
N ($>%1) & 1 \\ \hline

Usability & Number of concurrent edit sessions (in separate windows) &
N ($>81) & N ($>51) & 1 \\
& EQit / Download cycle time & 2 mins & 0.5 mins & 2 - 20 wins \\
\hline
Installability & Who by & End user & End user & End user \\ \hline
Demonstrability & Who by & Engineer & Customer & Sales engineer (?) \\ \hi.ine

Adaptability & Time to add new target &
3 elapsed months & 3 elapsed months & 1 year (if at all) \\ \hline

Large system configuration & Number of concurrent usexrs supported & 1
& N ($>81) & 1 \\ \hline

Applications Focus & Who can create focussed packages & N/A & OEM,
“-gtems Division & EI R\&D \\ \hline
ad{tabular}

\begin{tabular}{|{*{2}{p{1in}!}l*{B}{p{O.90in}}}|}\hline
Attribute &Scale & First release & Final release & Current products A\ \hiic=s nl

Qualifications required for use of tool seté& By who & Control Eng.& Apopl Exc.&

AL R

Training& Time to sclo & 3 days & 1 day & 3 days \M\\hline
ed of Use & Time to solve standard control problems & 2x & X & 2X A\ \hline
Likeability & Subjective by poll of users(l - 10) & 5 & 9 & 7 \\ \hline

IEC-1131 conformance & Number of non compliances & Some non-compliances &
Fully compliant & Base level model is not compliant \\ \hline

aoftware interfaces & Time to interface to a third party config package & 4 man

Testability & Time to produce graphical regression test suite &
« man months & 2% man monthss& 6x man months\\ \hline

adherence to graphical user interface standards & User interface

standards supported & Motif, Windows 3 (Open Look, Mac V& PM possible) & Moz:iZ,
(Mac, NT, Open Look \& PM possible)l& A bit of some standards \\ \hline\hline
\end{tabular}

\newpage
\part {Product Overview}

\section{Outline Of The Product}

The GCT product is designed as a graphical configuration toolset
capable of configuring all future, and most current, BEurotherm group control
instrumentation. The toolset must be capable of configuring a control

‘tem made up of equipment from different Group vendors.

GCT provides an extensible set of editors, allowing the additicn of
target, industry or application specific configuration methods within
a generic framework. The base set of editors includes SFC {(Sequential
Function Chart), FBD (Function Block Diagram), LD {Ladder Diagram) and
ST {(Structured Text). Each editor in the base set may also be tuned
to match the individual target’s feature set. GCT is also
reconfigurable itself so that its appearance can be changed to suit
the needs of different Eurotherm companies, target markets or
products. The provision for industry, application and target specific
editors within the toolset ensures that the user view matches his
expectations and that he is not forced into thinking in the IEC
paradigm.

\epsffig{gct arch.eps}{Overview Of GCT Architecture} {GctArch}

as well as adding additicnal editors, GCT may be subsetted to provide
a more limited set of features. For example, a ‘Set-up And Monitor’
utility may be created by providing only a Network viewer, the
Instance Browser and the Template viewer.

GCT editors generate CDL as an intermediate textual language, with the

requirement for a product specific ‘back-end’ to convert the CDL intc

the run-time format required by the target instrumentation.
“qure~\ref{GctArch} gives an overview of the relationship between the
_ .tors, CDL, and back-ends.

The intention is to create a toolset that can configure {\em existing}
as well as future products. The only restriction on the suitability of
a target is the ability to represent 1its configuration in CDL. In the
long term it is envisaged that {\em new} targets will be designed

T B

which exploit the features of CDL and are hence an ideal match with
GCT.

: configuration tool itself is hosted on a computer, with Windows 3
and Unix (Motif) as the initial platforms. Portability to other
platforms (particularly Mac, VMS and Windows-NT) will be given
consideration but there is currently no intention for the GCT project
to be responsible for such ports. Neither is their any intention to
provide GCT operation locally on an instrument, although it will be
possible to transfer graphical representations of the configuration to
the target for local commissioning.

\section{GCT Application Model}

GOT enables the user to construct control applications based on the
TEC 1131 methodology defined in \cite{IECSpec} and developed in
\cite{IECJuer}.

This section describes the CDL model as presented by GCT. It is not a requirsmen
that every feature of CDL (and GCT) is supported by a product wishing to use GIT
Section~\ref{targsup} describes how specific targets may use and customise GCT.

ibsection{Application Entities}

Figure \ref{gapehier} illustrates the relationships between the different
application entities within this methodology.

\epsffig{gapehier.eps}{Relationship of Application Entities within a
Configuration}{gapehier}

\subsubsection{Top Level Application Entities}

The highest level application entity is known, in IEC terms, as a {\bf
Configuration}. Due to the rather overloaded nature of this word the
term {\bf Network Configuration} is used in this document. A Network
Configuration consists of one or more {\bf Resources} which are
networked together. A Resource corresponds to the control strategy
running on a largely self-contained physical unit within the

Network Configuration, such as a single LCM (Local Controller Module; Li=n
PC1000. In some circumstances it may be appropriate tc map a single
Resource onto a tightly coupled network of nodes, such as a SS8D-Link
network.

W

The Rescurce level of CDL consists of a set of POUs that can be
wired together, and divided into subsets that run under the control cf
{\bf Task}.

\subsubsection{Program Organisation Units {PCUs) }
Network Configurations, Resources, and Tasks are Blocks that are

instanced as they are defined --- there is no concept of a reusable
Resource definition for example. POUs are reusable Blocks. That is to

T W

say, they are type definitions that can be instanced as many times as
regquired.

OU may be a {\bf Function Block}, {\bf Function } or a {\bf
Program} .

\subsubsection{Sub-Block Application Entities}

Within a Block are other application entities that are not stand
alone. That is, they only exist within their parent Block and are
saved, validated, built, copied, etc., only within the context of
thelr parent.

A Sub-Block may be a {\bf Service }, {\bf Transition}, {\bf Step}, {\bf
Action}, {\bf cold start expression}, {\bf wiring expresion}, {\
variable declaration}, etc..

i
i
4

\subsubsection{Application Entity Types}
Supported Application Entity types include:

\begin{itemize}
\item {\bf Configuration}

anecifies one or more networked resources that are allocated to run on physica.
es.

\item {\bf Resource}

Contains resource level blocks of type task, program and function
biock and the wiring between them.

[{\em A Resource definition should be able to be modified on line. This is
desirable to debug parts of an application when other parts of a

control system need to be kept running. This concept will be

supported by allowing dynamic con-line addition, deletion and rewiring

of Resource level POUs. GCT will (in later releases) support this.}]

\item {\bf Task}

Used to specify the execution rate of blocks that are asscciated with ig.
Tasks and blocks associated with tasks are assigned to specific hardware
processors or sub-systems.

\item {\bf Program}

A program is a function block that can only be instantiated at the resource
level. It usually represents a significant sub-division of a control
strategy (e.g. plant unit or machine contrcl). A program can contain

wetion blocks within it.

\item {\bf Function Block}

A function block consists of a number of input parameters that w

ill b
processed to generate a number of cutput parameters. The values of &tk

w

IETHE B

input and output parameters will be retained from one execution of a
given instance of the block to the next. A function block can contain
“er function blocks within it. :

\item {\bf Service]

A service is a sub-block internal to a program or function block.
Services are a (DL extension to the IEC65 standard and are designed to
provide a remote procedure call facility and the synchrenisation of
tasks across the networks. Services provide extra ‘‘methods’’ for a
program or function block resulting in modular block definitions and
making it easier to construct distributed applications.

\item {\bf Function}

A function has one or more named input parameters which will be processed Lo
return a value of a specified data type. A function retains no state
information from one invocation to the next.

\item {\bf Step}

A sub-block that is internal to a Block that is defined using the SFC
graphical language. A step specifies a number of gualified actions that
will be executed when the step is active.

\item {\bf Transition}

. wub-block that is internal to a Block that is defired using the SFC
graphical language. A transition specifies a condition which will cause
previously active step(s) to be cleared and subsequent step(s) to be made

active.

\item {\bf Action}

A sub-block that is internal to a Bleck that is defined using the SFC
graphical language. An action specifies some code that will be exescuted wken
the steps that it is associated with are active.

\item {\bf Structures \footnotemark (1]}

A sub-block with no associated algorithm, a place heolder for sets of relatad
data.

\item {\bf Enumerations \ footnotemark {1} }

A user definable set of names representing values that a particular
parameter may have. An enumeration defines a new data type.

\item {\bf Variables}

A data item. May be a reference to another data item elsewhere in the
Network Configuration.

\end{itemize}

\footnotetext [1] {These are currently not supported by CDL and are includez
here for completeness; at some time CDL will support them. }

CEETRE A

\subsubsection{Application Entity Hierarchy)
\ -ngffig{blckhier.eps}{Hierarchy Of Application Entities}{blckhier}

As has been said, one of a number of languages or representations may
pe used to define the body of a PCU or sub-block. Many of the languages
involve either the explicit or implicit internal declaration of other
sub-blocks.

\begin{itemize}

\item A configuration may contain resources.

\item A resource may contain task, services, programs and function blocks.
\item A service may contain function blocks and may invoke functicons.

A service body may be defined using SFC.

\item A program may contain functicn blocks and may invoke functions.

A program body may be defined using SFC.

\item A function block may contain function blocks and may invoke functicns.

A function block body may be defined using SFC.

\item A block or sub-block with an SFC body (eg service, program,

function block, action), will contain steps, rransitions and actions.
\item An action body may be defined using SFC. Alternatively an action may
invoke functions.

\end{itemize}

Thus it can be seen that the application model is hierarchical.
Figure \ref{blckhier}

shows the hierarchical relationship between the different types of
Application Entities.

"Lol, being based on this hierarchical model, will equally support
top-down, bottom-up or middle-out configuration of the control strategy.

\subsection{Libraries}

A benefit of the hierarchical, block model is that applications will be
highly structured and will encourage the reuse of previously defined blocks.
To this end, GCT incorporates library management features. Blocks

may be grouped into libraries based on criteria such as specific run-time
target functionality or an area of application. Applications can make use ox

previously defined libraries. Standard Libraries will be supplied by Eurothexrm.

GCT may also be used to generate user libraries which can in turn be
used by cther applications.

\epsffig{project.eps}{GCT Project}{project}

\subsection{Projects}

el

th

A number of network configuration definitions may be used to allocate a s
resources to physical nodes on a network in different ‘configurations’.

A number of alternate resource definitions may be used on the same physiczl
network to effect different control strategies.

GCT manages such a set of related network configurations

and resources in a {\bf project}.

GCT is used to define hierarchical resources, new blocks will be
created. These blocks will be stored in a library that is private to the
current project and will not be freely accessible to other applications. It
however be pcssible to use library management features to take a block from

project library and include it in a shared library.

Q

s

th

-t

—

Pigure \ref{project} Tllustrates the entities managed within a GCT
project.

bsection{References}
Resources have the ability to reference blocks and parameters in other
Resources, with bindings between Resources being resclved at run-time.
This late binding facility is considerably more flexible than the
basic IEC model, allowing e.g. a new PO resource to access values
from a PC3000 resource which had been previously defined, and without
modifving the PC3000 resocurce.
\subsection{Copy Protection}
There shall be some optional means of copy protecting GCT.

\section{GCT Architecture}

Refer to figure~\ref|{GctArch} on page~\pageref{GctArch} for an
overview of the GCT architecture.

\subsection{Cpen Architecture}

TR B

$%\epsffig{gapeflow.eps}{High-Level GCT Dataflow Diagram}{gapeflow} i

The GCT software will consist of a suite of front-end utilities that
"1 act on an underlying database (GCT Object Store), supporting
- creation and
management of CDL objects. The GCT
architecture will be highly modular, with the disparate utilities having =
minimal interface with the rest of GCT (except via the Object Store),
such that additional utilities and support for additional target
control systems may be easily incorporated as required.

In a later release of GCT it will be possible to incorporate extra
utilities without having to relink any GCT released code. Initially,
however, all utilities are linked together into one executable file.
It will also eventually be possible to supply sub-sets or super-sets
of the full GCT editor set so that a range of products may be produced
from the one basic set of tools and editors.

Behaviour of GCT, the Obiject Store, back-ends and the editors can be
customised to suit the preferences of an CEM, end user, group company,
target product, etc.. Customisation is achieved through the {\bf
options database}. This is a set of ‘‘configuration’’ files (termed
database sections) accessed through the object store.

=)

%%\epsffig{gapetarg.eps} {GCT Dataflow Diagram showing Target Independence:{gapat
\subsubsection{Use Of CDL}

provides a canonical, portable, extensible representation of all aspects
o. a control strategy. The use of this common representation will allow tre
sharing of tools and of application code between multiple configurers and
target systems.

OCT will be able to import free format CDL definitions and present

them for display and editing. GCT editors will
also support the generation of default graphics to allow a plain textual
~ finition to be viewed graphically.

\subsubsection{CDL Object Store}

The purpose of the CDL Cbject Store is to offload all aspects of managing
CDL objects from the variocus front-end utilities that wish to manipulate

CDL objects. Functions such as creation, parsing, storing, loading, browsing,
code generation, on-line access, download, etc will be handled bv the Object
Store in a consistent way and will not have to be reproduced and maintained
by multiple applications.

The CDL Object Store will be designed to be a network server that
uses CORE protocols for communication with editors\footnote{It will
not be implemented as such until a future release of GCT} .

\subsubsection{Incorporating Additional Front-End Utilities}

In the GCT architecture, the CDL Object Store will

support all the aspects of the creation and management of CDL objects.
This means that all editors that are capable of manipulating CDL objects
may use the Object Store and will not have to support this management
themselves.

An example of this would be the MicroCell spreadsheet representation
of an SFC:-

sgin{list}{}
(.cem The spreadsheet representation uses columns to represent
steps. Each column has a transition associated with it and the next
step(s) to make active. Each row has a variable associated with it.
A value (or expression) in a cell directs the assignment of that value
{or the result cf the evaluation of the expression) tc the row
variable during the colummn step.
\item A spreadsheet editor may be
incorporated into GCT by calling Object Store transactions to
create steps, transitions and actions. The Object Store would then
handle the parsing, storing and code generation for that CDL
definition.
\item Other information required by the spreadsheet editor may be handled by
the Cbject Store using attributes. CDL supports the definition of user
attributes that may be associated with any CDL object. For example,
the spreadsheet editor might use attributes to save the row numbers
used by the named variables that will reside in the left hand column
of the spreadsheet.
\end{list}

If required, a front-end utility may use the options database to save
characterisation parameters.

-1bsubsection{Incorporating Additional Target Support}
ibel {targsup}

The Object Store generates CDL for the specification of all aspects of

a control strategy. CDL is an extensible language and may be used to include
user defined attributes. It is this use of a well defined, canonical
representation that enables GCT to be a generic configuration

TETRE B

environment for multiple targets.

~~T may be configured to allow support of a target system provided

t the control model for the target system can be represented by CDL
\or a subset of CDL). The target need not support all aspects of CDL.
E.g., not all targets will support user defined block types. They
correspond well to the Resource level of CDL. Examples of such systems
are T1000 and (possibly) S8SD Link.

GCT is configured for a particular target by setting the approriatce
parameters in the options database. These parameters indicate the
program, batch~/ script file or in-bullt utility to use to achieve
the target specific functionality.

In order to provide support for a new target the areas LO be
addresged include:-

\begin{itemize}
\item {\bf Target Run-Time Format Generation}

The CDL Object Store cutputs the definition of a control strategy
in CDL text.

A translation utility must be developed to generate targel run time-format

from the CDL definition. A defined procedure will allow this utility to be

installed into the GCT envircnment and will be invoked by the

Object Store for code generation for the given target. The translation
'lity may use the CDL Object store interface to parse, understand and

-~anslate CDL,

Initially the Object Store may also be used to translate CDL code into C
that can be compiled and executed in a standard way {(as done in
the PC3000, PO and FMC).

A group standard for interpretive code that can be generated from CDL
should be defined [{\em Future Activity}]. This interpretive code
should be generated by the Object Store.

\item {\bf Target Load and Initialisaton}

After the target run-time format has been generated, a final process must
be able to take the target code, and do whatever processing is

required to download it to the target. GCT will use the

Core Protocol Suite FILE and REX (Remote Executive) protocols to

perform download and intialisation functions. Targets not supporting
these protocols must provide a mapping between them and equivalent
mechanism for the target.

\item {\bf Target Comms Driver}

The Object Store will provide a generic interface for on-line access from
~~7 ytilities to live target systems. GCT will use the

¢ Protocol Suite RDP (Realtime Database Protocol] to
perform on-line accgess.

\item {\bf Target Specific Front-End Utility}

A target specific front-end utility may be required. This can be incorporztec

CUHTET M 0

into GOT as for any other front-end utility.
‘~em{\bf Customisation Of Generic Tools}

Generic editors may be customised according to the capabilities of the
target product --- for example to limit the size of an SFC {(number of
steps, or number of actions per step) . This

customisation is held in the options database and is accessed via

the object store.

\end{itemize}
\subsection{Multiple Platforms|

GCT will be portable across the X window system (initialiy on
Interactive 386/ix) and Microsoft Windows 3 (version 3.1 upwards) .

The OSF/Motif library will be used in the construction of the version
of GCT for X, and this version will be designed to work best
when used in conjuction with the Motif Window Manager.

On PCs, GCT will support the following display standards: EGA,

VGA, Super VGA (resolution of 800 s\times$ 600 upwards recommended but
not necessary). Due to the device independent

nature of ¥ and MS Windows, support for future display standards of
higher resolution (e.g. XGA) will be automatic. The minimum PC
platform for GCT will be a 20MHz 386 with 4Mb RAM, 40Mb harad disk.

ibsection{Constructiocn}

The GCT development will use XVT, a high-level GUI toolkit, to

increase productivity and ensure consistency across suppoxrted

platforms. Use of XVT would also allow portability

to Mac and 0S/2. GOCT will alsc support interfacing with other third party
graphics libraries (e.g. GMS on Unix}.

GCT will be coded primarily in C++, and will reuse code (either C or
C++) from existing programming tools where possible.

\subsection{Operating environment}

GCOT will use the Core Protocol Suite (Realtime Database Protocol,

7ile Protocol and Remote Execution Protocol) to communicate

with targets. In this way GCT will fit into a network of Core compliant
products.

The network version of the CDL Object Store will use the Core
Communication Messaging Services tc provide Object Store gservices,

hence any node on a Core network should be able to query the object store
for information.

\section{General User Interface Features|

& GCT user interface will adopt the native ‘look and feel’ of the
operating system~/.graphics environment under which it runs (e.g.,
using the multiple deocument interface of Windows 3). This

means that GCT appearance will vary slightly according to the host platicr

At the highest level GCT will be driven from a herizontal menu bar

T

TR D

which will remain at the top of the screen (Windows 3) or the top of
the main window {(Motif}.

 GCT utilities will have a commen ‘lock and feel’.
ucilities will run inside windows and use will be made of dialocg
poxes, list boxes, icons, and other standard widget types, to
facilitate user interaction.

General user interface reguirements may be summarised:

\begin{description}

\item[Consistent:] Use of user interface constructs for similar operations will
\item{Compliant:] The design and behaviour of the user interface must be in
accordance with accepted GUI standards such as Motif and Windows style
guidelines.

\item[Responsive:] The user interface must appear responsive to user action at
all times.

\item[Input devices:] GCT will be driven most efficiently using a

mouse, but it will be possible to work with keyboard only.
\item[Accelerators:] Accelerator keys will be defined for rapid access to
frequently used menu options.

\item[Non-modal:] GCT will contain minimal modality; in general, all utilities w

\item[Multi-window:] The user will be able to view and modify multiple areas ct

the configuration simultaneously, using different utilities or multiple copies

of the same utility as reqguired.

\item[Interoperable:] It will be possible to exchange data between GCT

utilities, or between a GCT utility and third party utilities, using a

clipboard and other mechanisms (such as DDE) where appropriate.
~em[Multi-user:] It will be possible for nultiple users to work on

- plications simultanecusly across a network; library management will conztrck

locking and updating of the various components of a configuration by

employing the version control facilities.

\item[International:] GCT is targeted at an international market and

will therefore provide full multi-language support (8-bit character

sets), also taking into account date and time formats etc.

\end{description}

\subsection{Introduction Tc Menu Bar Usage}

GCT menu bar functions can be divided into three categories:-
\begin{description}

\item[{\bf Main Menu Functions}] which

allow access to operations affecting the entire GCT environment.
\item[{\bf Block Menu Functions}]

which contain ccocmmands affecting a block {such as save to file or
build executable}.

\item[{\bf Editor Menu Functions}]

which provide editor specific functions (such as deleting a marked
section of ST text or placing a transition in an SFC).
\end{description}

Under Windows 3 the menu bar at the top of the screen changes
~~cording to the current active window. Under Motif each window has
5 own menu bar according to its functionality.

The following descfiption of techniques for accessing menu bar commands app-i=S
equally to all menu bars.

The structure of a menu bar consists of a horizontal wmenu bar, whose

LTTEY Y

entries corresponds to a pull-down menu of commands related to a
particular area of functionality (e.g. file handling or accessing
help) .

..ems in the menu bar may be accessed using the mouse by clicking on
the required item, or using the keyboard by pressing the Alt key in
conjunction with the underlined (usually the first) letter of the item
(e.g. Alt-F to access the File menu) .

Having selected a particular pull-down menu, items within the
pull-down may be selected either by clicking on the item with the
mouse, or by pressing the letter of the item which is underiined le.qg.
3§ for Save or X for Exit, both of these being in the File pull-down) .

Some regularly used commands from the pull-down menus will have
corresponding accelerator keystrokes, so that a single keystroke can
activate the command without first having to access a pull-down menu.
Where a menu item has a corresponding

accelerator key seguence, this sequence will appear alongside (to the
right of) the item name in the pull-down menu. At present, this
specification does not address the assignment of specific
acclerators, although a number of these will be determined by style
guidelines.

Menu items which lead to a dialocg box (e.g.
to allow the setup of command options, or for confirmation) are
followed by an ellipsis (...) when displayed.

=wpage
- art{Editors and Utilities}

\section{GCT Views]
\label{viewsgct}

\subsection{Philosophy of Cperation}
\subsubsection{View Types}

There are two types of GCT views. The first type are those

that are displayed in the main GCT window, and that are

controlled by the main menu bar --- these are termed {\em main views} .
The second type are displayed in their own windows with their own menu
bar these are termed {\em independent views}. There is only ever cne
main view active at a time, but there can be multiple active independent
views. Note that under Windows 3 there is only cne menu bar. Its
contents change according to the currently active window.

Sections \ref{Mainviews} and \ref{IndepViews] set out the primary views In
GCT, and the operations supported by each view. The specific details
of the user interaction for each operation are not included but an overvisw
of the style of interaction is given as an introduction.
*Diagram of views

sffig{views2.eps}{Relationships between GCT Views}{views2}

Figure~\ref{views2] (page~\pageref{views2}) gives an overview of the
relationship between the different views within GCT. A labelled box
in the diagram represents a GCT view. The boxes are labelled with the
section number in this document that describes that view. An arrow

CUHETI EET

indicates that another view may be opened from that view.
~ibsubsection{Object Types})
sCT operates on the following types of object,

\begin{description}
\item{The Project}

GCT operates within a project or library context. The project acts as a
‘folder’ within which Resources, Configurations and the Project

Library are stored. The project context maps directly onto a

directory.

A Project is represented and managed by the Project main view (see
section~\ref{ProjectView} and figure-\ref{proiject view}, page-\pageref{prciect v

\item{Resources}

The Resource represents the control strategy executing within a node
or tightly coupled network.

Resources belonging to a project are listed and managed in the Project
main view.

A Resource is represented by a Block independent view by the editor that was
used to create the Resource (see section-~\ref{BlockView}).

-em{Configuraticns}

Configurations (called ‘'‘Network Configurations’’ in the tool)
represent the distribution of Resources across physical networks.
Configurations belonging to a project are accessed and managed via the
Project main view.

A Configuration is represented by the Network Configuration main view (ses s=:cc
\item{Project Library}

The Project Library is a folder containing all user defined block
types that are created within a project. Its behaviour and facilities
are identical to those of a Shared Library. The Project Library is
accessed and managed via the Open Project main view (see
section~\ref{ProjectView}) or a Library Browser independent view {see
section~\ref{LibraryBrowse}} .

\item{Shared Libraries}

A Shared Library is a folder containing user defined blcck types that
may be used by more than one project. Their behaviour and facilities
= identical to those of a Project Library. Shared Libraries are
:egsed and managed via the Open Library main view {(see
section~\ref{ProjectView}) or a Library Browser independent view (see
section~\ref{LibraryBrowse}) .

\item{Block Types}

CETHORTY L

Block types are created in a Resource or Library context. They are
-1ways saved in a library (Project or Shared). Block types are managed

. the Open Project~/ Library main view (see
section~\ref{ProjectView}) or a Library Browser independent view (see
section~\ref{LibraryBrowse}) .

A block type is represented in a Block independent view by the editor
that was used to create it.

\end{description}

\subsubsection{Main Menu}

The menu for the main window operates on items in the current main
view and also provides other functions global to the GCT environment.
The menu bar window will, by default, remain permanently at the top of
the screen {Windows 3) or top of the main window (Motif) while GCT 1is
running.

The user will be able to select options from the main menu

at any time and with any combination of views on screen, lnappropriate
menu items being ‘greyed out’ to indicate their unavailability.

The layout of the items in the menu bar will be based on the following ocutline:-

{\samepage

\begin{tabular}{|1l|1llp{9cm}x]|} \hline

\verb+File+ & \verb+ (View)+& \verb+Utilities+ & \verb+Window+&& \verb+Helr+
\hline

\end{tabular}

\begin{tabular}{|1|p{5in}} \cline{1-1}

\verb+Project /Library Manager+ & Changes main view to the project~/
library management view (\ref{prolib view})\\ \cline{1i-1}
\verb+Close Project+ & Closes the current project {library]. Greyed
out if no project [library] open.\\

\verb+Project Views & Changes the main view to the Open Project-/
Library view { \ref{ProjectView}). Greyed

out if no project [library! open. \\ \cline{1i-1}

\verb+New...+ & Creates a new PQOU. Greyed

out if no project [library] open.\\

\verb+Open...+ & Opens a POU.\\ \cline{1-1

\verb+Print Setup...+ & {\em Windows 3 only} Enters printer set up dialog. VAT
\verb+Exit+ & Exits the tool \\ \cline{1-1}
\end{tabular}

-3

% end samepage

{\samepage
\begin{tabular}{|1{1|1lp{9cm}xr}} \hline
\verb+File+ & \verb+{View)+& \verb+Utilities+ & \verb+Window+&& \verb+Helo+

CRTER WET

\hline
\end{tabular}
‘hegin{tabular){p{0.3in}|1|p{4.7in}} \cline{2-2}
tem 1 & View specific menu items\\ \cline{2-2}
& etc. & \\ \cline{2-2}
\end{tabular}

} % end samepage

For example, the \verb"(View)" menu may be used by the network editor to
provide an \verb"On Line" menu.

{\samepage

\begin{tabular}{{11|1|1lp{9cm}x]|} \hline

\verb+File+ & \verb+ (View)+& \verb+Utilities+ & \verb+Window+&é& \verb+Help-
Vhline

\end{tabular}

\begin{tabular}{p{0.%in}|1l|p{4.1in}} \cline{2-2}

& \verb+Browse...+ & Invoke the instance browser \\

& \verb+Preferences...+ & Define user preferences\\

& \verb+Setup...+ & GCT Setup sub-menu \\
& etc. & Other registered utilities\\ \cline{2-2}
\end{tabular}

} % end samepage

{\samepage
» following on {\em Windows 3 only}

\begin{tabular}{|111{1l|p{2cm}x|} \hline

\verb+File+ & \verb+ (View)+& \verb+Utilities+ & \verb+Window+&& \verb+Help+
\hline

\end{tabular}

\begin{tabular}{p{1.725in}|1|p{3.2in}} \cline{2-2}

& \verb+Tile+ & Arrange all windows as tiles \\

& \verb+Cascade+ & Cascade all windows \\

s \verb+Arrange Icons+ & Arrange iconised windows tidily\\ \cline{2-2}

& S\surd \verb+ (window 1)+ & Currently selected window\\ \cline{z2-2}

& etc. & other windows \\ \cline{2-2}

\end{tabular}

} ¥ end samepage
\subsubsection{Block Menu}

The menu on a block edit window contains itemg relating to the block
(e.g. Save, Validate) and items relating to the block’s editor.

The common items to all bleock menus are as follows

"\ samepage
£ Motif :~}

\begin{tabular}{|1[11lp{9cm}r]|} \hline

\verb+File+ & \verb+Edit+& \verb+ (Editor 1)+ & \verb+ (Editor 2)+ && \verb-He_i-

\hline
\end{tabular}

TR ER T

\begin{tabular}{|llp{sin}} \cline{1-1}

\verb+Close+ & Close the block edit (prompts if there are unsaved changes)\\

\-arb+Save+ & Save block definition to current project~/ library \\
rb+Save As...+ & Save block definitcion to current project~/ library

under a new name \\

\verb+Validate+ & Validate block definition \\

\verb+Build+ & Create the

target representation of the block\\

\verb+Sub-Blocks. ..+ & Invoke sub-block management dialog\\ \cline{1-1}

\verb+Print+ & Print the block definition\\ \cline{1-1}

\end{tabular}

} % end samepage

{\samepage

\begin{tabular}{{1]/1]11lp{9cm}jr|} \hline
\verb+File+ & \verb+Edit+& \verb+ (Editor 1)+ & \verb+ (Editor 2)+ && \verb:He p-
‘\hline

\end{tabular}

\begin{tabular}{p{0.29in}|1|{p{4.7in}} \cline{2-2}
\verb+Undo+ & Undo the last change \\ \cline{2-2}

& \verb+Cut+ & Cut the selected items into the clipboard\\

& \verb+Copy+ & Copy the selected items into the clipboard\\

& \verb+Paste+ & Paste the clipboard items into the window\\ \cline{2-2}
&

&

\

g

\verb+Delete+ & Deletes the selected items without copying to the clipboara\’
\verb+Undo All+ & Undo all changes since last save \\ \cline{2-2}
end{tabular}

", % end samepage

{\samepage

\begin{tabular}{|11|1|1lp{9cm}r]|} \hline

\verb+File+ & \verb+Edit+& \verb+{Editor 1)+ & \verb+(Editor 2)+ && \verb+Help-
\hline

\end{tabular}

\begin{tabular}{p{0.75in}|1|p{4.31in}} \cline{2-2}

& \verb+Item 1+ & Editor specific menu items \\
& \verb+etc.+ & \\ \cline{2-2}
\end{tabular}

} % end samepage

{\samepage

\begin{tabular}{{111]1|p{9cm}r|} \hline

\verb+File+ & \verb+Edit+& \verb+ (Editor 1)+ & \verb+(Editor 2)+ && \verb:Help-
\hiine

\end{tabular}

\begin{tabular}{p{1.63in}|1|p{3.4in}} \cline{2-2}

\verb+Item 1+ & Further editor specific menu items \\
verb+etc.+ & \\ \cline{2-2}
\end{tabular} .

} % end samepage

CEETEE L

—

[{\bf Windows 3 :-}

" Windows 3, since there is only one menu at the top of the screen,
. Block menu also holds some of the Main menu items.

{\samepage
\begin{tabular}{|1]1111p{7.5cm}r]|} \hline
\verb+File+ & \verb+Edit+& \verb+ (Editcor 1)+ & \verb+ (Editor 2)+
g\verb+Window+ && \verb+Help+ \\

Yhline
\end{tabular)
\begin{tabular}{|1|p{Sin}} \cline{1l-1}
\verb+Project/Library Manager+ & Changes main view to the project~/
library management view (\ref{prolib view}}\\ \cline{1-1}
\verb+Close Project+ & Closes the current project [libraryl . \\
\verb+Proiject View+ & Changes the main view to the Open Project~/
Library view { \ref{Projectview}). \\ \cline{1-1}
\verb+New. ..+ & Creates a new POU.\\
\verb+Open...+ & Opens & POU.\\ \cline{1-1}
\verb+Clogse+ & Close the block edit (prompts if there are unsaved changes)\\
\verb+Save+ & Save block definition to current project~/ library \\
\verb+Save As...+ & Save block definition to current project-~/ library
under a new name \\
\verb+Validate+ & Validate block definition \\
\verb+Build+ & Build block for target execution\\
\verb+Sub-Blocks...+ & Invoke sub-block management dialog\\ \cline{1-1}
\verb+Print+ & Print the block definition\\
\verb+Print Setup...+ & Enters printer set up dialog. \\ \cline{1-1}

srb+Exit+ & Bxits the tool \\

. .erb+About...+ & Shows the GCT ‘About’ text. \\ \cline{1-1}
\end{tabular}

} % end samepage

{\samepage

\begin{tabular}{|1[1]{111p{7.5cm}r|} \hline
\verb+File+ & \verb+Edit+& \verb+(Editor 1)+ & \verb+(Editor 2)+
"g\verb+Window+ && \verb+Help+ \\

\hline
\end{tabular}
\begin{tabular}{p{0.2%in}|1|p{4.7in}} \cline{2-2}
& \verb+Undo+ & Undo the last change \\ \cline{2-2}
& \verb+Cut+ & Cut the selected items into the clipboard\\
& \verb+Copy+ & Copy the selected items into the clipboard\\
& \verb+Paste+ & Paste the clipboard items into the window\\ \cline{2-2}
& \verb+Delete+ & Deletes the selected items without copying to the clipbcar=::
& \verb+Undo All+ & Undo all changes since last save \\ \cline{2-2}
\end{cabular}
} % end samepage

.amepage
\begin{tabular}{|11]1|1l1lp{7.5cm}r]|} \hline
\verb+File+ & \verb+Edit+& \verb+{Editor 1)+ & \verb+(Editeor 2)+
s\verb+Window+ && \verb+Help+ \\
\hline
\end{tabular}

YR TEE W

i

\begin{tabular}{p{0.75in}|{1|p{4.31in}] \cline{2-2)
& \verb+Item 1+ & Editor specific menu items Ny
s \verb+etc.+ & \\ \cline{2-2}

d{tabular}

—_—
o\®

end samepage

{\samepage
\begin{tabular}){|111]|1]|1p{7.5cm}xr|} \hline
\wverb+File+ & \verb+Edit+& \verb+ (Editcor 1)+ & \verb+ (Editor 2)+
g\verb+Window+ && \verb+Help+ \\

\hline
\end{tabular}
\begin{tabular}{p{1.632in}|1|p{3.4in}} \cline{2-2}
5 \verb+Item 1+ & Further editor specific menu items S\
& \verb+etc.+ & \\ \cline{2-2}
\end{tabular}

V% end samepage

{\samepage
\begin{tabular}{{1111|1|p{7.8cm}r|} \hline
\verb+File+ & \verb+Edit+& \verb+ (Editor 1}+ & \verb+(Editor 2)+
g\verb+Window+ && \verb+Help+ \\
\hline

\end{tabular}

sgin{tabular}{p{2.547in}|1|p{2.4in}} \cline{2-2}

\verb+Tile+ & Arrange all windows as tiles \\
& \verb+Cascade+ & Cascade all windows \\
& \verb+Arrange Icons+ & Arrange iconised windows £idily\\ \cline{2-2}
& \surd \verb+(window 1)+ & Currently selected window\\ \cline{2-2}
& etc. & other windows \\ \cline{2-2}
\end{tabular}

} % end samepage

\subsubsection{Sub-Block Menu}

Wwhen a sub-block 1is opened from within a block edit a

restricted block menu is available. Menu items which relate to the

whole block are not available on the sub-block. Only the first
pull-down menu is affected :-

\samepage
\bf Motif :-}

‘regin{tabular}{|1]111p{7.5cm}r|} \hline
rb+Sub-Block+ & \verb+Edit+& \verb+{(Editor 1)+ & \verb+(Editor 2)+ && veErI-:
\hline
\end{tabular}
\begin{tabular}{|1l|p{Sin}} \cline{1-1}

\verb+Close+ & Close the sub-block editl\\-
\verb+Validate+ & Validate sub-block definition \\ \¢line{1-1}

TR W

ih

\verb+Sub-Blocks. ..+ & Invoke sub-block management dialog. Greyed out

unless this sub-block has sub-blocks of its own.\\ \cline{l—l}

\wverb+Print+ & Print the sub-block definition\\ \cline{1-1}
wd{tabular}

} % end samepage

\samepage
\bf Windcws 3 :-}

\begin{tabular}{|1]1111p{7.5cn}r|} \hline
\verb+File+ & \verb+Bdit+& \verb+ (Editor 1)+ & \verb+ {(Editor 23+
g\verb+Window+ && \verb+Help+ \\

Yhline
\end{tabular}
\begin{tabular}{|[1l|p{5in}} \cline{1-1}
\verb+Project/Library Manager+ & Changes main view to the project~/
library management view (\ref{prolib wview})\\ \cline{1-1}
\verb+Cloge Project+ & Closes the current project [library].\\
\verb+Project View+ & Changes the main view to the Open Project-~/
Library view { \ref{ProjectView}). \\ \cline{1-1}
\verb+New...+ & Creates a new POU.\\
\verb+Open...+ & Opens a POU.\\ \cline{1l-1}
\verb+Close+ & Close the sub-block editl\\
\verb+Validate+ & Validate sub-block definition \\ \cline{1-1}
\verb+Sub-Blocks...+ & Invoke sub-block management dialog. Greyed out
unless this sub-block has sub-blocks of its own.\\ \cline{1-1}
\verb+Print+ & Print the sub-block definition\\

srb+Print Setup...+ & Enters printer set up dialog. \\ \cline{l-1}

. erb+Exit+ & Exits the tool \\ \cline{1-1}
\end{tabular}

} % end samepage
\subsubsection{HEelp Menu}

The help menu is common to all menu bars
This menu will give a number of access points tc the help system.

The Help pull-down menu contains the following items:

\beginicenter}

\begin{tabular}{|1l|p{5in}} \cline{1-1}

" \verb+Index+ & Opens a help system index window A
\verb+Menu Bar+& Help on the menu bar S\

\verb+Keyboard+& Help on using a keyboard with GCT \\
\verb+Mouse+ & Help on using a mouse with GCT \\
\verb+Tutorial+& GCT tutorial? \\
\cline{1-1}
\verb+About+& GCT copyright and version information A\
\cline{1-1}
\end{tabular}
\end{center}

\subsection{Main Views}
\label {MainViews}

Main views all occupy the main window. They are controlled from the
main menu bar.

TR

‘subsubsection{Initial View}

viabel{prolib view}
The initial view presented on start up has the GCT welcome
message and the project~/ library management view.

The welcome message gives version and copyright information.
The project~/ library management view lets the user

\begin{itemize}

\item Open / Create a project

\item Open / Create a library

\item Perform other management functions such as deleting and renaming
a project or library.

\Vend{itemize}

\subsubsection{Open Project~/ Library View}
\label {ProjectView}

$¥Diagram of views
\epsffig{projectv.eps}{Main Project View}{project_view]

" _gure~\ref{project view} illustrates the Open Project~/ Library view.
Projects and libraries behave in very similar ways, the main

difference being that a library cannot contain either Configuratiocns

or Resources. Project and library block management functicns are accessed
as '‘Other Operations’’. These include \verb"Ccpy, Move, Rename" and
\verb"Deletea",

The view lists all the blocks (Function Blocks, Functions, and
Programs, together with Resources and Configurations if appropriate)
that are in the project or library. Blocks can be opened for edit and
new blocks can be created.

Biocks selected from the scroll list can be copied, moved, deleted,
printed, renamed, etc. via the '‘'Other Operations’’ button. The
library search path (other libraries which are searched for block
types not contained in the currently cpened project or library) is
managed via the ‘‘libraries’’ button.

\subsubsection{Network Configuration View}
\label{configuration view}

The network configuration view associates Resources with target nodes.
Functionality includes

agin{itemize}
\item Specifying which Resocurces are to run on which nodes.

\item Defining network characteristics

T TR A

\item Downloading, starting, stopping Resources

' “rem Launching a Resource editor in on-line mode .

\item Network montioring and debugging

\item Performing inter-Resource wiring functions (Var References).

\end{itemize}

\subsubsection{Target Support]

Ucilities can be incorporated to allow configuration of target specific
agpects of any target system.

\subsection{Independent Views]
\label {IndepViews}

Independent views exist in windows separate from, and largely
independent of, the main view. There can be multiple active
independent views, most of which will have their own menu bars. Under
Motif each independent view has its menu in its own window. Under
Windows 3 the current active window shows its menu bar at the top of
the screen.

ibsubsection{Block View}
\~abel{BlockView}

The GOT block view will allow the display and medification of all
application block types.

The block editor will consist of a one or two pane window and a menu
bar, with the panes separated by a sash. The two panes will centain
the block’s declaratiens in one pane and the body in the other. [{\em
There is a current discussion as to whether declarations and body
should be in separate windows, not separate panes of the same window.
panes may be retained to show debug data, etc.}]

The declarations are the interface to the block and the internals of
the block (see section \ref{DeclarationsiEditors} for details of the
Declarations Views - the different views presented in the
declaraticns pane). The body is the algorithm of the block (see
sections \ref{STEditor} to \ref{FBDEditor} for details of the

Body Editors - the different views presented in the

body pane) .

{\bf Declarations}

s block declarations consist of its interface and its
internals.

The interface of a block is the parameters that may be viewed and used
by other blocks {(i.e. its inputs and outputs) . Interface parameters
are also accessible from within the implementation of the body of the

T T

block.

= internals of a block are the parameters and other CDL items that

. be referenced {\em only} from within the implementation of the
body of the block, they cannot be seen from outside. Some internals
are implicitly declared, e.g. an SFC body includes internals which are
Steps, Transitions and Actions.

The representation of the interface and internals declarations is
common to all block types and is independent from the implementation
of the body.

The declarations pane provides a generic representation of all
application block types.

The interface editor will support:

\begin{itemize}

\item Display interface and internal declarations graphically or textually.
\item Declare interface and internal variables and attributes

\item Interactive help.

\end{itemize}

{\bf Body}

"he body of a block is the actual algorithm that is associated with

. : block. The body may be implemented using one of a suite of IEC
Lwnguages (e.g. SFC, ST, etc), or using another representation (e.g. C,

spreadsheet, etc).

The representation of the body of a block will depend on how it was
originally defined. When the body of a new block is first opened for
edit, an option is given to select one of a number of editors that are
appropriate for the given block type. The selected editor will then be
invoked to allow the body to be defined. Thereafter the body will
retain its body editor type and whenever it is selected for display or
modification, the respective editor will again be invoked.

In some cases it will be possible to display or transform a block body
into a simpler representation (usually to ST text), eg SFC to ST. It
will not in general be possible to transform to a more complicated
body type (although default generation of SFC and FBD graphics from ST
text will be supported).

{\bf Block and Sub-Block Types]

The following sub-sections describe features of the specific types
supported. In each case editors that are appropriate for the definition
of a block of the given type are listed. (Other editors

may be appropriate e.g Spreadsheet for definining any SFC.)

:gin{itemize}
\item Configuration:
To be defined (the first release of GCT will not include the configuraticz Z=vz.
in other words, configurations will consist of a single resource)

(i

TEEL -

\begin{itemize}
Vitem Interface: None.
" tem Internals: Resource declarations.

\end{itemize}
\ltem Resource:

\begin{itemize}

Vitem Interface: None.

\item Internals: Task, Service, Program, Function Blocks
\item Body may be edited by: ST, FBD.

\end{itemize]

\item Task:

\begin{itemize}
\item Body : A list of POU-task associations may be displayed.
\end{itemize}

\item Service:

\begin{itemize}
\item Interface: Inputs, Outputs.
\item Internals: declarations {includes steps, transitions and actions it
body) .
\item Declarations may be edited by: ST, FBD, Tempalte Editor
‘item Body may be edited by: ST, LD, SFC, FBD.
1d{itemize}

\item Program:

\begin{itemize}

\item Interface: Inputs, Outputs

\item Internals: declarations (includes steps, transitions and acticns it
body) .

\item Declarations may be edited by: ST, FBD, Tempalte Editor

\item Body may be edited by: ST, SFC, LD, FRD.

\end{itemize}

\item Function Block:

\begin{itemize}

\item Interface: Inputs, Outputs, Input_ Cutputs.

\item Internals: declarations (includes steps, transitions and actions if
body) .

\item Declarations may be edited by: ST, FBD, Tempalte Editor

\item Body may be edited by: ST, SFC, LD, FED.

\end{itemize}

\item Function:

\begin{itemize}
item Interface: Inputs, implicit typed output
em Internals: declarations.
\item Declarations.may be edited by: ST, FBD, Tempalte Editor
\item Body may be edited by: ST, LD, FBD.
\end{itemize}

\item Step:

f]‘J
&y

93]
re|
()

\begin{itemize}
\item Interface: Executing, Time, (Finished) parameters.

em List of actions associations and gualifiers may be edited
vend{itemize}

\item Transition:

\begin{itemize}

\item Interface: None.

Vitem Internals: None.

\item Body may be edited by: 8T, LD, FBD.
\end{itemize}

\item Action:

\begin{itemize}

\item Interface: Qutput (need clarification from IEC standard) .

\item Internals: None - uses declarations of POU in which action 1s defined.
Will include steps and transitions if SFC body.

\item Body may be edited by: ST, SFC, LD, FBD.

\end{itemize}

\end{itemize}
\subsubsection{Library Browser}
\label{LibraryBrowse|

_.\em The library browser been absorbed into the Open Project~/
Library view (\ref{ProjectView})}]

\subsubsection{Instance Browser}
\label{InstanceBrowse}

The Instance Browser [{\em or Hierarchy Browser}] is used to peruse & hierarczyv

instances. This hierarchy may be rooted from either a type definition
(exploring blocks instanced within the type) or from a Resource or
Network editor.

The browser can be used,

\begin{itemize}

\item To explore the block hierarchy.

\item To select {(one or more) objects from the block hierarchy,
pasting their full hierarchic names on a clipboard

\item To ‘‘open’’ an object from the block hierarchy. Opening a block
displays the template view of the object (if the hierarchy root is
on-line the template view is in On-Line monitor mode; else it is in a
non-edit mode). From the template view it should be possible to
launch an edit of the object’s type definition.

\item Do queries, for example find all the

blecks with \verb"TEST ENABLE == TRUE"

‘end{itemize}

The browser should.support the following features,
\begin{itemize}

\item Selection of an instance by name completion
\item Non-hierarchic searching for a named instance

CURTER WO Y

\item Filtering blocks by type or partial name (including wild cards)
\item Selection of an instance name which is transferred to the clipboard.
\~nd{itemize}

\subsubsection{Trace}

A trace facility will provide a non-intrusive means of run-time diagnostics.

A trace specification may be defined and downloaded and trace data can be
collected from the target system and displayed. Trace specifications
can be stored on file for later retrieval.

({\em Trace is only valid when supported in the target. Isn’t 1t part
of type debug mode of any editor rather than a separate view? Igs 1t a2
rarget facility? or a general target facility?}]

\section{Declarations Views}
\label{DeclarationsEditors}

The Declarations Views are used in four modes,

\begin{description}

\item{\bf Type Edit:} During { block edit} a declaration view is used
in the declarations pane to edit the definition of the interface and
internals of the block.

\item{\bf Instance Configuration:} During { block edit}, a declaration
view is used to configure the instance of any sub-block. For examnple,
set cold start values or attributes such as ‘‘units’’ on a block
._aced within another block. In this mode only the block’s interface

ig made visible.

\item{\bf On-Line Monitor:} When a block (instance} is viewed on-line,
a declaration view is used to display and interact with the live
values of the block's interface variables. In this mode only the
block’s interface is made visible.

\item{\bf Type Debug:} When debugging a new block type, the user
wishes to use the same editor as used to create the block operating in
an ‘‘on-line view mode’’ as a source level debugger. Each declarations
view must therefore be capable of on-line coperation to support Lype
debugging.

\end{description}

GCT will provide three different declarations views,

\begin{description}

\item{\bf ST:} The ST declarations view is a raw text editor (see
section \ref{STEditor} for further details}. The declarations are
entered as ST text {e.g. \verb"VAR INPUT x:DINT; END_VAR").

cem{\bf Template Editor:} The template editor lists parameters
according to their mode (inputs, outputs, internals) and provides a
menu based mechanism for their definition~/ modification (see section
\ref{TemplateEditor} for further details).

\item{\bf FBD:} The FBD editor provides a purely graphical view of a

TR T

block’s declarations and the wiring between them (see

section \ref{FBDEditor} for further details). Note that using FBD on

its own generates an automatic body that invokes all of the blocks in
er to effect the wiring. Use of FBD

weclarations with any other form of body is allowed, but there is no

automatic invocation of the blocks --- it is up to the user to specify

the required invocation in the body method he chooses.

\end{description}
Not all declarations views can be used in every mode:-

\begin{tabular}{r|clclc|c}
& Type Edit & Instance Config. & On-Line Monitor & Type Debug\\ \hline

ST & S\surd$ & S\times$ & S\times (1) & \surd (2,3)\\ \hline
Template & \surd & $\surds & S\surd$ (4) & S\surd (3)\\ \hline
FBD & \surd & \times & S\timesS (1) & $\surds (3,5)
\end{tabular}

Notes,

\begin{enumerate}

\item Although the ST or FBD editors could be used in On-Line Monitor
je it doesn’t make much sense. After all if you want access to the
11 type definition you’re in Type Debug mode --- otherwise you only
have access to the interface and the template editor is the standard

interface representation.

\item In type debug mcde the ST editor requires some dialog

capability. E.g., selecting a piece of text will bring up a list of

all the variables named in that text together with their live values.
Selecting any of these variables will bring up an interaction dialog
which can be used to change the value [{\em possibly in a bottom pane?}].

\item Any changes to values in Type Debug mcde can be captured and selectively
applied to the type definition in type edit mode.

\item The Template Editor in On-Line Monitor mode restricts access to

reading and writing values only. In particular, writing to attributes

may not be supported by the target. Writing to display attribtues that
affect the template editor view itself will take immediate effect. Any
changes to values in On-Line Menitor mode can be captured and applied

to the instance definition in Instance Configuration mode.

\item The FBD Editor can be used for Type Debug : selecting a terminal
will pin up the live value at that terminal [{\em possibly in a bottom

pane?}l; selecting a block will bring up an On-Line Monitor for that
block.

id{enumerate}
\subsection{ChoiceAOf Editor}

f{\em this section is open for review. IL may be that opening a new
block just brings up the declarations editor and cholce of body editor is

DY MR O

made the first time the body is opened from the declarations editor|]

™ha choice of declaration view in type edit mede is made by the

oociated body editor. The editor (when registering itself to the
object store) specifies the default declaration editor and lists the
other permissible declaration editors. The user can change the actual
declaration view to any of the permissible editors by menu option, and
by saving preferences in the options database.

\subsection{VARs, VAR REFERENCES, Attributes and I/0}
\label {VarRef]

A VAR REFERENCE is a declaration that is a reference to a (set of)
variable (g) ocutside of the current scope. There should be two ways oOf
declaring VAR REFERENCEs,

\begin{itemize}
\item Create the variable as if it were local, then convert it to a
reference. To support this method the variable declaration dialog
(Template Editor and FBD Editor} must have an ‘‘is a reference’’
button and a control for configuring the reference (reference string,
scan rate, etc). The reference string for the variable can be set by
either direct entry or
selecting the target object via the instance browser.
\item Select the '‘to be referred to’‘ variable(s) via the instance
browser. This should autcomatically create a VAR REFERENCE of the right
type. If multiple variables are selected a new type definition should
be autcmatically created and instanced.

d{itemize}

There is a requirement to defer the specification of certain nested
instance parameters. For example, the specification of I/0 addresses
and VAR REFERENCE reference strings may be left as late as Resource
configuration, no matter how deeply nested the block. [{\em It is
suggested that}] there should be a class of cold start value called a
‘rconfiguration input’’ (specified by a pre-defined attribute) with
the following specific behaviour,

\begin{itemize}

\item They do not appear as ncrmal wireable inputs.

\item They can only be set from the declaration view Instance
Configuration mode or in raw ST.

\item If they are left unspecified in a block type definition they are
automatically made configuration inputs at the next level out. The
user can rename them from the declaration editor.

\end{itemize}
\subsection{Template Editor}
\label{TemplateEditor)}

> template editor is a declaration editor which supports Type Edit,
Instance Configuration, On-Line Monitor and Type Debug modes.

[{\em Note that in the following sections the semantics of short and
long list parameters are not yet defined}]

ITHTRE W

\subsubsection{Type Edit Mode}

' egin{itemize}

em Creation, deletion, modification and renaming of simple and
compound [{\em FB or Structure}] variables and constants.
\item Creation, deletion, modification and renaming of attributes for
variables.
\item Specification of cold start expressions for variables
\item Specification of parameters as short~/ long list with respect to
listing pins during instance configuration (short list parameters appear by
default in a wiring diagram, long list reqguire addicional action to ba
made visible)
\item Specificaticn of parameters as RETAIN’d variables.
\item A template view that shows the block as it will appear when
instanced within another FBD
\end{itemize}

\subsubsection{Instance Configuration Mode}

\begin{itemize}

\item Interface parameters only, defaults to short list

\item Assignment of cold start expressions

\item Assignment of attribute values.

\item Assignment of configuration inputs

\item Change from short list to long list

\item Invocation of block type editor.

\item Specification of parameters as RECIPE variables. The term (blame

PWL not me) is like RETAIN, but made on an instance variable, not on a

e definition. It allows nomination of non-RETAIN’d parameters to be
v.ved that may be written by operator interface or program.

\end{itemize}

\subsubsection{On-Line Monitor Mode}

On-Line Monitor mode is equivalent to Instance Configuration mode
running on-line.

\begin{itemize}

\item Interface parameters only, defaults to short list

\item Live values displayed

\item Interaction dialog for overwriting values

\item Change from short list to long list

\item Invocation of block type editor.

\item Change to type debug mode.

\item Must be able to capture an On-Line change and make permanent (Eg a
cold start value).

\end{itemize}

\subsubsection{Type Debug Mode}

Type Debug mode is equivalent to Type Edit mode running con-line. The
facilities provided are as for a source level debugger.
Making changes to the type definition is not possible, but it is
~ssible to inspect (and change) live values from the original block
e definition.

\begin{itemize}

\item Interface and internal parameters available
\item Live values displayed

\item Interaction dialog for overwriting values

\item Invocation of block type editor
\item Must be able to capture an On-Line change and make permanent (Eg a
~n~1ld start value).

id{itemize}

\subsubsection{Template Views and RunTime Panels}

Configuration of the default view on a run-time panel will be via the
Template Editor.

\subsubsection{Reconfiguring the Template Editor}

The template view should be optionally reconfigurable to the following
extent

\begin{itemize}

\item Associated parameters can be grouped, with a textual nane
string for each group.

\item The order of groups and the order of parameters
within groups can be specified.

\item The display format (Eg Display precision) of
parameters can be set. This is in effect setting an attribute that is
used by GCT itself {as well as by a runtime system).

\item Parameters can be nominated as short list parameters. When
-emplate view is initialised in Instance Config or On-Line Monitor

© _.de, only short list parameters are seen. A full parameter list is

available from a ‘‘View’’ menu. By default all parameters should be

short list parameters {otherwise the user may be confused when nothing

happens) . [{\em There is a view that the template editor should

only ever show the full list, whatever its mode}]

\end{itemize}

\secticn{ST Editor}
\label {STEditor}

The ST editor will be a simple text editor, initially based on the XVT
facilities, that can be used for either declarations or body editing.
ST text will be saved and blocks will be validated by the CDL Cbject
Store. It will be possible for users to install their own editor to
uge instead of the ST editor.

This editor will allow the textual definition of almost all

aspects of a resource from the top layer of a resource down to a

parameter attribute. Depending on the nature of the block being

edited, the editor may in future assist the user by performing ST syntax checkin
and by providing templates for the textual definition.

(In fact, the ST editor will support the CDL superset of the IEC 1131-3

ST language (see \cite{CDLSpec} and \cite{IECSpec}}).

will be possible to import free format ST text from a file, into a blozk
definition.

In Type Debug mode the following are possible,
\begin{itemize}
\item On selecting a piece of text, all variables in the selectad

CURIE g

text will be displayed as live wvalues in a pin up window [{\em or pane?}].
\item (If supported in the carget) Breakpoints can be set (and
cleared) on lines of code. Single step execution from a breakpoint.

em (If selected by the target) Trace of nominated variables at
congecutive invocaticns of the block. Nomination of trace trigger
points.
\end{itemize}

A later CGOT release should contain an upgraded editor (the
‘“grructured’ ! ST editor) that has an intimate knowledge of ST. E.g.,
help on syntax, syntax directed colouring, automated indentation, etc..

\section{SrC Editor}
\label {SFCEditor} ‘
$\epsffig{sfc.eps){Example Sequential Function Chart Window){sfcj

This editor, based on the IEC DIS 1131-3 Sequential Fucticn Chart (SFC)
graphical language (see \cite{IECSpec}), will handle the configuration
of steps, transitions, and alternate and parallel sequences. It can
only be used for PQOU body editing.

Features of the 3CT SFC editor will include:

\begin{itemize}
\item The SFC editor will present a palette of tool options.
\item Placing of steps and transitions will be constrained to a grid.
\item Connecting lines will be constrained to orthogonal polylines. Bends in
connections will be constrained to the SFC grid.
“em A move facility will allow selected steps, transitions or
nectors to be moved. Any connections will be stretched.
\item An object in the work area, eg a step or transition, may be opened Ior
display and editing.
\item Cut and Paste will be accesgsible via the menu bar.
\end{itemize}

Tocls available in the tool palette will include:

\begin{itemize}

\item {\bf Pointer :}

The pointer tool will allow selecting or opening one oOr more steps,
transitions or connections.

\item {\bf Step :}
The Step tool will allow the placing of steps in the SFC work area.
A single body may have multiple SFC networks, but each network may only have
a single gtart step.
\item {\bf Transition :}
The Transition tcol will allow the placing of transitions in the SFC work arssa.
\item {\bf Connect :}
The connect tool will allow the wiring of steps and transitions.
%\begin{itemize}
%\item A step may not be directly connected to another step. A
%transition may not be directly connected to another transition.
tem Option will be given for routing at connect time. Direct connection wi_l
result in auto-royting.

tem Define route from source to destination of connector.

¥ o \? o oy

\i
\item Source and destination connection points will be highlighted when zprroor

VRS WTT O

e

