CONTROLLED DISTRIBUTION OQNLY [F COLOUR STAMPED

ControlWORKS

CDL Object Manager

© Copyright 1992 Eurctherm Limited

APPROVAL FOR Author Checked ELECTRONICALLY STORED DOCUMENT

DOCUMENT REVISION DIRECTORY PATH

JOB TITLE Signature Date pine:/users/cell /3j00/ cease/cdlobj.tex

Senior Softwars Engineer ORIGINATING DEPT: ENGINEERING
CONTROLLING DEPT: ENGINEERING

NG. of SHEETS
CONTROL SHEET "

AUTHOR: John luer, Jenny Oliver DOC. TYPE: Software Design Specification

CONTROLLED DISTRIBUTION COPY | ROGHMENT 4 controlwORKS

TNTY IF COLOUR STAMPED ON .

[ROL SHEET. CDL Object Manager
E U R O T H E R M E l DOCUMENT NUMBER SHT.

HPG24674C301 1

TR T

DOCUMENT REVISION HISLORY

roc. Rewvision Diate | Changes ‘

1 | October 15, 1892 | Initial Draft ;

1 Scope

This de-cument discusses the design of the Eurotherm ControlCASE (ECC) Object Manager.

The Object Manager handles the creation and modification of ControlWorks obieets malntaining coherence
between them and acts as a server for ControlWorks utilities. [t will allow for transfer of information between
=ditors in an implicit way. For example it will be possible for editors to know if another editor has changed
something they are viewing.

The Object Manager will initially be a set of C or U4+ routines that can be called by ControlWorks utilities
1o view. edit and manage CDL objects.

Initally the Object Manager will be linked in to the editors as one appiication; ultimately the Object Manager
will be a separate process communicating by RPC and/or X client protocols {on Unix) and DDE and/or DDL
(on Windows) to editor processes.

Initallv (in its linked form) the object manager will be re-entrant; in its server form the Object Manager will
be muiti-threaded to provide load sharing between its clients.

2 Overview

CDL objects are units that organise parts or all of control algorithms expressed in CDL (or a graphical
equivalent such as sequential function charts, function block diagrams or spreadsheets). CDL objects have
declaraiions of data and other object instances that they will manipuiate, and cne (or more) algorithms that
do she manipulation. {This is defined precisely in section 2.1.) In general the CDL object manager will provide
an interface that works on these “units of organisation” directly, even though they can be created implictly
by ODL. The algorithms that manipulate the object will however in general be dealt with by providing to the
obizct manager text buffers containing fragments of CDL {e.g assignment statements, expressions ete.).

Th: CDL Object Manager will have to

+ Maintain 2 RAM resident definition of CDL objects for fast access

» Store and retrieve definitions of CDL Objects, including any associated graphic information (e.g from
SFC diagrams) from disk

o Provide facilities for editors to interactively create CDL Objects, store them to disk, delete them from
disk and/or from the RAM database

+ Provide facilities for back end processors to read CDL Objects and translate them to product specific
form. (For example T1000 GRF files)

A primary goal for the design of the Object Manager is that disk store for CDL objects is itself CDL. There
are various reasons for this —

PRI BT

g

CONTROLLED DISTRIBUTION COPY | ROGEMENT | ControlWORKS
| “~T.Y IF COLOUR STAMPED ON 1
[ROL SHEET. CDL Object Manager

_ME U R 0 T H E R M E I DOCUMENT NUMBER SHT.

@ Copyright 1992 Burotherm Limited HP024674C301 2

e }'o mantaln portability (especially for customers between Windows, LILX eic.), Dexibuity ATHE fiLiEEe
upwards compatibility more easily achievable.

e To make it easier to write back end processors that take CDL, and create both an executable control
sttategy and graphics to represent that strategy o a controller (e.g T1000 and the GRF file}. Such back
end processors could make use of the object manager services to read the CDL file.

+ To make it feasible to construct default plctures from raw 5T

o To centralise management of files representing CDL objects and minimise the number of file types and
hence

» To promote reuse of code and facilities

Tde:liyv editors (and back end processors) should not have to “understand” or generate CDL. In this way if
CTL changes editors will continue to work, providing the interface to the object store does not change.

In :ddition the Object Manager will provide various ways of manipulating CDL objects, Objects and their
dedarations (instantiations of sub-objects) may be defined using a procedural method, as in C routines such
as ithis is just an example, and not an actual proposed set of C routines):

ob_handle = create_new funct ion_block{"A_new_block");

ok = add_declaration{obj_handle, “ini", DIKT, FULL,¥0_BOUXDS, IEPUT);

ok add_declaraticon{obj_handle,”in2", DINT, HULL,HO_BOUNDS, QUTPUT) ;

ok * add_declaration(obj_handle,"ableck",FBLOCK,"block_typel”, ¥O_BOUNDS, INTERKAL);

i

]

her interface calls will exist that take in CDL text to define the algorithms that manipulate or initialise
declarations. For example

ok = add_cold_start_expr(obj_handle, "ini", " 1 ¥ 10 - otherin”);

where the first parameter is the object the cold start value is being added to, the second the parameter within
th= object being given the cold start and the third a buffer containing a CDL expression — the cold start
expression.

It sould also be possible to define a set of declarations, e.g input/output parameters, by sending the declaration
sectton for the CDL.

Some editors will need to analyse CDL fragments quite extensively; for example an FBD editor may need fo
emzbed in the CDL algorithm describing the FBD diagram, information that will allow it to restore the user’s
FBD diagram; the object manager will provide services to query parse trees of CDE, and for editors to embed
and retrieve information in CDL fragments.

CONTROLLED DISTRIBUTION CoPY | ROGUMENT 4 conerolwORKS
~VTY IF COLOUR STAMPED ON)
TROL SHEET. CDL Object Manager

" E U R 0 T H E R M E l DOCUMENT NUMBER SHT.

. © Copyright 1992 Eurotherm Limited HP024674C301 3

R TR AR

2.1 UL

Th: CT/L lenguage consists of a set of Program Organisation Units which naturally form part of the set of
sbi=e1s 1hat need to be handled by the Object Manager.

PO7s =re Function Blocks, Programs, and Functions, (later on they may include stand alone Services and
Haxrdlers).

Prograrn Orzanisation Units are arranged either in a Library or a Project. Libraries may be shared between
sther libraries and projects. A Project contains a private library for an application.

In widition to these POUs there are two other sorts of objects in CDL, namely Resources and Configurations.
Rexurces znd Configurations exist within a Project but not within libraries they are not reusable; so they do
not form part of the project library itsell.

Resource definitions are, however, are also POU’s; they can be defined in FBD, or ST (by wiring together
blotk declarations).

POTs have a declaration section, divided into an interface specification (the inputs, cutputs and in outs}, and
the internals. {Resource definitions just have internals).

POCs are defined either in ST, FBD or SFC (or possibly in another format e.g spreadsheet transiated by
edizors 1o CDL, or even in another language such as C}.

SEr"s and FBDs contain CDL objects which have associated ST, FBDs or 5FCs — in other words these objects,
hate associated with them the body of a POU but not the interface (input, output and in-out) declarations
associated with a POU. (This could be thought of as having an empty interface) They may have internal
desiarations, however. Objects in this class and the associated “POTU body” are —

Transitions have an associated ST ! expression
Actions have an associated FBD, SFC or ST body *

Declarations have an associated cold start ST expression

Fusthermore certain CDL objects will require the maintenance of attributes which will differ from editor to
editor. For the SFC editor, for example, Steps, Transitions and Actions will require graphic information
relzting to their position in the SFC picture to be maintained.

Aviributes will be embedded in CDL as strings surrounded by { and . The strings will specify a set of name,
va.ie pairs. for example ?

51Dt : PID { X_pos := 300, Y_pos := 500 }

Tr:set of objects (to which attributes may be attached) are, roughly speaking, all instanced objects including
stzos. actions and transitions, and an object that represents the definition of the POU. It may be necessary
1o attach attributes also to parameters of instanced function blocks.

iiater this may be defined in FBD or Ladder as per 1EC
“In IEC Actions can have a boolean output, currently we do not support this
“The syntax for attributes is yet to be decided; this follows syntax curreatly in use by the ST compiier

DOCUMENT
CONTROLLED DISTRIBUTION COPY | REVISION Control WORKS

MY IF COLOUR STAMPED ON

1

TROL SHEET. CDL Object Manager

E U R O T H E R M E a DOCUMENT NUMBER SHT.

© Copyright 1992 Eurotherm Limited HP024674C301 4

2.2 UbjJect manager faciities

Th: Object Manager will support Project and Library management as {ollows —

o Provide services to list, open, copy, rename, build and delete projects and libraries. Note that in the
first instance these commands will be mapped onto simple shell/batch commands suchas those in the
FBE.

o Provide services to delete, add and copy blocks to/from libraries and projects.

o Provide services to explore blocks in a library/project by fast load (i.e not loading the body or attributes
necessary to show graphics), and examination of thelr components.

The Object Manager will support editing of blocks or components of blocks that have an associated body as
folinws —

" The CDL definition of a block {and all its components} can be “loaded”. This makes the block ready
for editing.

&

> For ali components that have a body the Object Manager will return the name of the editor the com-
ponent was created with,

e

. If the component’s body was created textually an ST buffer is available for editing the body. The Object
Vanager will provide services to parse and verify this butfer.

thr

If the component’s body was created graphically then the CDL object’s and their logical CDL intercon-
nection may be explored, (see below).

5. Any CDL object has attributes, which can be modified and used to store graphical lay out (or any
other editor specific) information. The CDL Object Manager will provide facilities to add a name,value
attribute pair, retrieve a named attribute’s value, and delete attributes by name. This will probably be
provided as a library of routines available to each editor, rather than via the object manager interface.

5. The Object Manager will provide services to transform a ST buffer into a set of “parse tree objects”™.

Services® will be defined allow

¢ querying of the tree, for example to find if it corresponds to a valid tree for the editor — a FBD
editor could not handle a tree that contained [F statements say.

o adding/deleting sub-trees to the parse tree objects; for example an FBD editor could interactively
create the tree corresponding to a wiring diagram by “editing” a parse tree of wiring expressions.

 adding of information to ST parse trees that is stored and retrieved by the manager. For example
an FBD editor could decorate a parse tree corresponding to the wiring with information about
routing ete.

3ince the first release of the tools will suppert SFC and ST enly it is unlikely these will be required immediately
* \n alternative is a set of library routines that editors couid link in

CONTROLLED DISTRIBUTION COPY | ROGIWENT | Control WORKS
LY IF COLOUR STAMPED ON 1
TROL SHEET. CDL Object Manager

i EU ROTH ER M Ei DOCUMENT NUMBER SHT.

@© Copyright 1992 Eurotherm Limited HP024674C301)

R

2.3 Adding attributes and editing b i parse trees

When describing CDL it is possible to talk about SFL objects being “connected”, for example a step is
conzected to a transition. In order to understand and manipulate CDL there will be internally in the object
marager a representation of this. It could be possible to ask the object manager which steps are connected
10 which transitions and vice-versa. If this is of general use to any editor then the object manager should

suppott such services.

This is not any generalised notion of graphical connectivity, but rather an explicit representation of CDL
comectivity. Graphical connectivity will require much more information that the mere fact that a step is
connected to a transition; for example the path of the connected wire.

The Object Manager stores this inforrmation as “attributes” of the CDL object. The Object Manager can have
no mderstanding of these attributes since in general the attributes will depend on the editor being used —
for example a spreadsheet editor will have a completely different set of attributes to a SFC editor, but both
will be definining CDL steps and transitions.

It iz important to make sure that the way attributes are associated with objects, and the objects they can be
asscciated with, is of general use to all editors.

Cermain editors may need to add “attributes™ at a finer level than the objects that make up a set of declarations.
For exainple an FBD editor may want to create the parse tree corresponding to a wiring expression, and add
attributes to the parse tree that correspond to the graphical lay out of the wiring expression. The Object
Wanager will also have to support storage and retrieval of these attributes.

Below various alternative strategies for attribute storage and retrieval are considered with respect to possible
editors.

2.3.1 SFC editor

The CDL for an SFC does define implicitly connectivity in terms of steps and transitions. However graphically
a transition is not a simple line from one step to another, because of divergence of a step into a set of parailel
activations, convergence of the same, selection of one out of a set of alternate steps, and convergence of a set of
selected steps into one step. Graphically could be thought of as intermediate objects which connect to steps.
Textually an selection is represented by several transitions specified in mere that one place.

It may therefore be more natural to graphically represent divergent connections between steps as connections
from a step to an intermediate object which may be a parallel branch or a selection, and then connections to
the destination steps, and convergent connections as the opposite to this.

The CDL object whose attributes represent this intermediate object is the step that is the point of divergence
or convergence °. The attribute for transition can then be simply describe the line from the intermediate
object to the step.

Having analysed the CDL the object manager knows whether a step has a branch or selection transition out
of it. or into it, and therefore can tell the SFC editor whether or not to expect the intermediate chject.

Consider figure 1, which defines some steps and transitions for the following SFC picture and shows x y
cocrdinates of some key points with 0,0 in the top left of the picture.

The CDL used to store this including attributes could be —

1 the case of a transition that is both rendezvous and a parailed activation then there are two intermediate objects merged
into one. An alternative and probably better strategy would be to make the transition the intermeditate object. The aim of the
present discussion is simply to validate the approach, not define the way that the SFC editor should use attributes. That is for
ancther document!

CONTROLLED DISTRIBUTION COPY | ROGHMENT | Control WORKS
“ .Y [F COLOUR STAMPED ON

1

FROL SHEET. CDL Object Manager

E U R O T H E R M E I DOCUMENT NUMBER SHT.

© Coprright 1992 Eurotherm Limited HP(24674C301 3]

® gives the top left hand corner of the s5tep w3}

TEm y1 { sfced :® ’'xy:9,27 F : xi_acu(¥); END_STEP

Uy o~

(+ simple transition from one step to another *)
TREYSTTION { sfced := 'start:12,4 end:12,7°}
FROM x1 TO x2 := i; END_TRANSITION

{* sTansition out of step has a parallel activation.
'branch’ defines where to position intermediate object *}
sTER x2 { sfced := ’xy:9,7 branch:4,11,22,11,12,9° : x2_act(N); END_STEP

(* sne CDL tramsition cbject, but two connections from intermediate
abject to steps *)

TRE¥STITINE { efced := ’starti:8,12 endi:8,13 start2: 18,12 end2:18,13'} FROM
2 TO { 23, x4) 1; END_TRANSITIOHE

i

STEP x3 { sfced := ’xy:5,13’} @ x3_act(N); END_STEP

3T=® x4 { sfced := ’xy:15,13° F : x4_act{N); END_STEP

{= one CDL tramnsition object, but two connections from intermediate
object to steps *)
TRLESTTION { sfced := ’starti:8,15 end1:8,17 start2:18,15 end2:18,17° ¥
FROE (x3, x4) TO x5 : xB_act(N),; END_STEP

(* step is reached via a rendezvous, 'rendezvous’ defines where to position
intermediate object *)
STZP x5 {sfced := ’xy:9,20 rendzevous:10,20,12,20’ } : x5_act(N); END_STEP

{* This transition object stores where the line from
the intermediate selection object to the destination
step is drawn *)

TRANSTITION { sfced := ’start:10,24 end:10,26’}

FROM x5 TD x6 := 1; END_TRANSITION

{* This transition cbiect stores where the line from
the irtermediate selection object to the destination
step iz drawn *)

TRANSITION { sfced := ’start:15:24 pt1:15:26 pt2:25,26 pt3:25,1 pt4:12,1 end:12,2°F
FROM x5 TO xi := 1; END_TRANSITION

(* This step stores where the intermediate selection object is drawn *)
STZP x6 { sfced := ’xy:7,26 select:12,22,12,24° } : x6_act(N); END_STEP

Hese the editor defines one attribute for each step and trassition which can be retrieved to draw the graphic
for each connection between steps and transitions. All other information is implicit in the CDL — in other
words the editor asks the object manager which steps are connected to which transitions. Before the editor
¢can draw a transition (and indeed understand the attribute string for the transition) it must find cut whether
the transition is a branch or rendezvous or selection or simple transition. Again all this information is already
tmplicit in the CDL.

DOCUMENT

CONTROLLED DISTRIBUTION COPY | pEVISION Control WORKS
SNTY IF COLOUR STAMPED ON y
TROL SHEET. CDL Object Manager

3 E U R OT H E R M E l DOCUMENT NUMBER SHT.

© Copyright 1992 Furotherm Limiied HP024674C301 7

[EITE T

W e toe picture 18 being edited the editor performs lraisaclions wilh inheé ODJECT BLOTE SUCh a5 add siep
“deine iransition” .

On: possible problem is how to store incompletely defined transitions, i.e that do not go anywhers or do not
corrs from anvwhere. This implies the object manager must understand partially incorrect CDL, such as

TRLFSITION { sfced := ’start:10,22 end:10,26°} FROM x5; END_TRANSITION

Th: object store would also provide a facility to verify that an SFC was correct.
The obiect store would provide the means to dump the SFC to file.

4p slternative to this is that the editor stores a full representation of the SFC as a large attribute of the initial
ster. or as less large attributes of the set of steps. In this case the CDL object manager does not need to
profide facilities to query CDL step connections and the link between the editor and the object store is not so
inzEmate, but there is the question of how the CDL is generated — it means editors have to understand how
1o renerate valid CDL. If CDL changes so does every editor.

2.3.2 FBD editor

Th: CDL representation of FBD diagrams will use CDL wiring expressions 7 since general IEC “wiring”, L&
staements containing function block input assignment, may contain other things not expressible in FBD e.g
looos, case and if statements, and may vary the expression assigned to a input on different call of the block.
Any CDL block which just contains CDL wiring will be expressible as an FBD.

For the FBD editor CDL wiring expressions will require attributes to be maintained. For example consider

the wiring expression

VAR
f: PID (PV ::= 10.0 + X1.PV };

In 20 FBD diagram this consists of wiring of X.PV to the output of an add function, which has two inputs
10.0 and Xi.PV.

This representation of wiring means that wiring expressions are associated with the declaration of the block
~pilling” the expression, L.e the uitimate destination of the wire. This is correct since FBDs suppert fan out
bus not fan in.

There are three possible ways the graphic attributes could be stored. These are

i. There is one attribute string attached to the declaration of the block which gives the information needed
to draw the wire, 1.e

X: PID { PV ::= 10.0 + X1.PV){ all attribs for block and wiresy};

2. There is one attribute string attached to the input of the block —

“This refers to the extension to IEC where a statement in an instantiation of a block such as X: PID (PV ::= 10.0 + X1.P¥
Y: s a ~wire” j.e PV cannot be assigned to elsewhere and the expression is evaluated on every call of X

CONTROLLED DISTRIBUTION COPY | REGEIENT | ControlWORKS
“NLY iF COLOUR STAMPED ON |
IROL SHEET. CDL Object Manager

B E U R OT H E R M El DOCUMENT NUMBER SHT.

© Copyright 1992 Eurotherm Limited HP024674C301 8

Y. PID { PV 1 attrib string for wire f ::= 10.0 + K1.PV)
{attribs for block X},

Note we now need one attribute séring for each wired input, and one for the block declaration,

. Thers is one “attribute” string attached to every sub-expression of a wiring expression, giving simply
the position of single wires between inputs and outputs of functions and functicn blocks and the position
of functions —

I- 2D { PV ::= 10.0 { attrib for 10.0 F
+ { attribs fer + I
11.PV { attribs})

{attribs for block %I};

. This implies that there is a text buffer that contains the CDL wiring expression and CDL attributes
| inserted by the FBD editor. The object manager provides services to temporarily turn this buffer into
a parse tree and allows queries on the tree for attributes.

Tre trade offs are

" The amount of work the editor has to do in understanding the attribute strings, to recover connectlvity
information already implicit 1o the raw CDL

3. The complexity and amount of interface between the editor and the object manger.

Below are some guesses as to what the attribute for the fbd editor might look like.

First with option 1

vii
1 { edpos:= '30,40°} : PID (PV ::= 10.0 + X1.PV)
{ fbd :=’FnObj(Id2,+,10,20),Conn{X.P¥,1d2.1,20,25),Comn(10.0,1d2.2,15,30)" *

there is almost another language for the FBD in the attribute string.

Sesondly with option 3 we might have,

VA3
1 { edpos:= 730,40’} : PID { PV { fbd := ’wire:20,10:30,10" } ::= 10.0
{fbd := ’wire:15,30:20,30 '} +
{ fbd := ’pos:10,20:15:40 wire1:10,20:30:50 wire2:32,40:45,50’ }
11.PV { fbd := 'wire:20,25'})

Here the editor has to work with a parse tree of the wiring expression in order to discover connections between
functions and function blocks. The attributes of each object in the object store include the positions of input

wires.
The editor and the object store have a more inter-twined interface.

Transactions would allow

CONTROLLED DISTRIBUTION COPY | ROGIIMENT 1 Control WORKS
“N\T'Y IF COLOUR STAMPED ON

1
FROL SHEET. CDL Object Manager

- E U R O T H E R M E | DOCUMENT NUMBER SHT.

© Copyright 1992 Eurotherm Limited HP0246874C301 g

R R

o

o creation or deletion of function call nodes (or direct wiring)
o connection of function block outputs to nputs of function calls
. comnection of function call cutputs to inputs of function calls

» comnection of function call outputs to function block nputs

‘In srder to allow incomplete wiring the editor might have to create “non-existent” dumy objects to wire to)
Theawe transaction effectively edit a CDL parse tree of expression.

For sxample

zinl-| |
| apD |
pin2-i {~—-pin3
i 1
en 2| |
i |
=/
ohot = create fcall(“ADD",attributestring);

ok = add_conn_to_input{ebji,PIN,"INt", ,pini};

ok = add_conn_to_input(obji,PIN, HINZY,pin2);
ok = add_conn_to_input(obji,OBIECT,"IN3", obj2);
ok = connect_obj_to_pin{obj3,pin3spec);

2.3.3 Spreadsheet editor

Spreadsheets are a representation of a subset of SFCs. Each column in the spreadsheet defines a step. Each
row is a variable. Each cell contains an expression which is assigned to the variable when the step 1s active.

At the bottom of the spreadsheet are groups of pairs of special rows that define transitions, labelled “ON”
an: “GOTO”. The first row tin the pair is the “ON” row, the second the “GOTO” row.

Ceis in the “ON” row contain expressions that cause a transition from the step in the corresponding column
to she step named in the second “GOTO” row.

Th: ~ON” and “GOTO” rows define either simple transition or selections from one step to the next step.

Tk other cells containing expressions assigned to variables define ACTIONSs active when a step is active. In
orssr to reproduce the spreadsheet the editor needs to recover the variables assigned to in ALL the actions
(scme of the cells may be empty indicating that no assignment is made to the variable). It also needs to
recaver the individual expressions for each action.

New the variables are declared in the declaration section for the block. Therefore attributes can be attached
1o -he declaration section which indicate the row position in the spreadsheet of those variables. Similarly
att=ibutes declared for each step can define the column position of the step.

There could be various ways of dealing with the expressions in the cell.

CONTROLLED DISTRIBUTION COPY | ROGIafien 1 | Control WORKS
“NTY IF COLOUR STAMPED ON
TROL SHEET.

1

CDL Object Manager

E U R O T H E R M E ! DOCUMENT NUMBER SHT.

© Copyright 1892 Eurotherm Limited HPD24674C301 i0

R ST

The action has & CDL texs bulfer contaimng the assignment Stalelients, and an aliribute giving e
cell pumber to line number (in the text buffer) correspondence. This allows retrieval of the agsignment
statement from the text buffer by the editor. The edisor has to be able to understand the syntax of the
assignment statement.

* The action has a CDL text buffer. The object manager provides services to turn this buffer into a parse
tree aobjects nd allows queries on the tree for attributes, and edits on the tree, for example

ok = replace_assign_statement(stmt_handle,"IN","A - 10 * vy,

might be the way the editor replaces a cell assigning expression A - 10 * 3 to IN.

As ‘or the FBD editor this illustrates that either the editor stores more complex attributes in CDL objects,
or 5 embeds attributes into CDL text and has a more inter-twined interface with the CDL object manager.

2.4 TInvalid CDL

Ediors must be able to store partially complete definitions.

¥ CDL is the store for each editor then there are some not mutually incompatible alternatives

". The CDL object store must understand an “invalid” set of CDL that has been defined by an editor

¥ The editor must interpret a valid piece of CDL into a incomplete diagram.

When dealing with SFC the first option is usable, since the “invalid” CDL will consist of non-connected or
partially connected CDL components. These are relatively easy to express in CDL, viz:

TRANSITION FROM x5; END_TRANSITICN

Wiring expressions {such as in FBD) are more problematic for the object manager. It is probably preferable
that the editor creates special variables to wire to that it knows are not really present.

Another issue when providing services to parse CDL is definining what CDL fragments are related in what
context. A function biock body would not be valid when trying to declare a set of input variables.

DOCUMENT

CONTROLLED DISTRIBUTION COPY | REVISION Control WORKS
“NIY IF COLOUR STAMPED ON ;
TROL SHEET. CDL Object Manager

E U R 0 T H E R M E I DOCUMENT NUMBER SHT.

® Copyright 1992 Eurotherm Limited HP024674C301 11

R RE

S nase L uvupject wvianager ingeriace

Phase | is not going to support FBD or spreadsheet editors. Therelore only & subset of the functionality ahove
45 required.

Tn Fhase I there will be ONFE executable with ail the editors and the obiect manager linked together.

The interface to the object manager will be using a set of C++ objects. In order to allow the implementation
of t1e objects to change, without requiring any recompilation in code using the interface every interface
sbjzrt will be implemented with no private data or methods, except one anonymous pointer to the actual
imriementation, Viz

// Jeclare the anonymous class
1zss ZealinterfaceExample;
less InterfaceBxample

a0

wivate:
RealInterfaceExample® it
prblic:
void imethod(}:
-

None this will have a slight disadvantage in that there can be no in-line methods in the class {since the “real”
obi:ct cannot be used in the header). I should, however, make it easier to split the interface hetween processes
later o

The first step in using the object manager is to create an interface object of class “CbjStoreinterface”. This
w1l ultimately be used to manage such things as network connections to the object manager.

Th- interface object will also be passed an ErrorStream pointer ErrorSiream to be defined which will be used
for passing global error messages from the object manager back to the editors (e.g no more disk space, cannot
wrie file ete.}.

Th- interface object has a method used to register an editor object for each editor. When the object manager
apens a block for editing it will find an attribute which is the editor used to create the block; it will then use
the interface object to look up the editor that edits the block and call back that edifor.

Th= interface object also contains methods to list projects, libraries, and to open or create projects or libraries.

Prajects are viewed as specialiation of Libraries. For example a Resource can only be created in a Project. So
there is a library parent class with a child Project class.

Basic information about language objects is exchanged using the “CDLInfo” structure.

// CDLInfo used to declare a mnew object
stzuct CDLInfo
{

{DLType type;

CDLMode mode;

char= name;

char * typename;

hool isRetf;
irrayInfo array;
s
CONTROLLED DISTRIBUTION COPY | ROGIMENT | Control WORKS
*T Y IF COLOUR STAMPED ON 1

TROL SHEET.

CDL Object Manager

) E U R O T H E R M E ! DOCUMENT NUMBER SHT.

© Copyright 1992 Eurotherm Limited HP)24674C301 12

o

class ObiStorelnterface

{

puklic:
tiar= name0f0bjectMgr; // will be cms address of Object Manager
ErrorStreams GlobalErrors;

{bjStorelnterface (char* name,
ErrorStream* rrors);

/! Listing Prejects, Libraries
SurimglistIterator ListAllProjects();
StrimglistIterator ListAllijbraries();

// Open Project or Library
Librarye OpenlLibraryOrProject {char# name);

// Create Project or Library
Library* CreatelLibraryOrProject {charx name,
" Stringlist* LibraryList, // library path
bool IsProject);

;/ Register an editor that can be invoked by the Ubject store
tool RegisterEditor (Editor= thekEditer);

i/ Find out which editors the {bject store knows about
TditorListIterator* ListEditorList(};
¥

clzss Editor

{

pablic:
¢/ Will link editor via an attribute to the block
const char* identifier;

’/ Method to be called to edit something.

// Should return immediately having fired up the application

{/ and initialised the event locp eic.

300l EditBlock (IndependentEditable* theBlock, bool brandNewBlock);

struct BlockInfo
{
char* name;
char#* libraryName;
3lockType type; // program, function_block , resource
3lockTarget target; // FMC, PO, PC3000 - to contrel builds

+;
CONTROLLED DISTRIBUTION COPY | REGUMENT | ControlWORKS
“LY IF COLOUR STAMPED ON 1
TROL SHEET. CDL Object Manager

—EUROTHERM EI DOCUMENT NUMBER

© Copyright 1992 Eurotherm Limited HP024674C301

SHT.

13

R I

~lasz Library

oublic:
/: For conveniencs returns the interface object
CILObjStoreInterfaces GetContext ()

/; is it a project or a library?
bzal IsProject() {return FALSE;}

;

/. Gopy Project or Library (does an implicit create, error if
/. already exists unless ’merge’ is true in which case an

/. attempt is made to merge the projects/libraries)

tral CopyProjectOrlibrary (char* to, bool merge);

/. Rename project - errors go to the global error stream
/. trme returned on success, false otherwise
bcal Remame (char#* to):

/7 Delete the Project or Library,
/; arrors go to the global error siream
./ true returned on success, false otherwise
bocl Delete (J;

A ""DLLangFElement” is the base class that representa one of a funcsion block type, function, function block
insiance, program type or instance, a variable {including an array variable), a step, transition, service, action,
tast or resource.

Fach CDLLangElement has an associated CDL buffer, whose use depends on what type the object represents
anc how the obejct is defined. For example a simple variable may have a cold start expression in its buffer,
a transition the transition condition, a function block type declared in text the whole of the funcsion block
body. an action the action body. However a step will not have 2 CDL buffer.

Every CDLLangElement also has a set of methods to add attributes or property definitions (the latter can
onis be applied to var references).

A specialisation of CDLLangElement is the IndependentEditable class which represents CDL objects that can
anc services.

Each IndependentEditable has a set of CDLLangEiements associated with it, which are the CDL objects
deciared in its scope. Objects are declared using AddElement and deleted using DeleteElement.

Sub-objects are retrieved [rorn any CDLLanghlement using the GetElement method. This is because, for
example, it is possible to instance a function block which has an already defined set of sub-objects, 1ts
parameters. Similarly a step has the step flags.

Anv IndependentEditable can be place on-line, by giving the address {the full Resource path name) to the
actual object. At this point any sub-object can have its on line values queried using the GetLiveValue method.

Need to consider download, start stop i.e REX interface

A Block object is a further specialisation of an Independent Editable. It represents something that has its
own definition i.e a Program, Resource or Function Block definition. It can be saved (with or without verify),
built, unbult or renamed.

be »dited by an independent editor. These are function block types, functions, programs, resources, actions, .

CONTROLLED DISTRIBUTION COPY | ROGTaNENT | Control WORKS
"MT.Y TF COLOUR STAMPED ON

TROL SHEET. !

CDL Object Manager

B E U R O T H E R M E I DOCUMENT NUMBER SHT.

© Copyright 1992 Eurotherm Limited HP024874C301 14

R EE

JS Lihrary shject continued

§1:i1d Library, errors go to the passed in error stream
/ true returned on success, false othervise
hze) Build {ErrorStream®};

arrors go to the global error stream
. t-ue returned on success, false otherwise
trol UnBuild ()

" LibraryList is the list of libraries used by this library.
* LibraryList management ——- Add,Delete change all do UnBuilds
srror: go to the global error stream
/7 trne returned on success, Ifalse otherwise
w10l AddToLibrarylist (chars name, int position);
rol DeleteFromLibrarylist (int position);
=z0l ChangelibrarylListOrder {int from, int to);

"R

i

turns the 1ist of used libraries
farimglistIterators ListLibraryList(d;

' Biock Management
tlockInfalisilterator* ListBlocks{BlockInfoSetg options);

/ Omly dlocks which match options are inciluded, so that can search
/ 5y a named set of blocks
IlockInfolistIterator* ListBlockDependencies {char* blockName,
BlockInfoSetk options);

/ find which Library a given block is in, including
/ tnis library
-har= LecateBlockInLibraryList {char* namej;

/ Block creation etc. Will fail for Resources
/ since this is a Library object

“oel CreateBlock(BlockInfok Opticns);
o0l DeleteBlock (chars name);

/ kick off an appropriate edit sessiomn,

/ returns true if it succeeds, errors go to
"/ global error stream
ool EditBlock(char* name);

/ Copy block into this library from another
/ returns true if it succeeds, errors go to
/ global error stream
00l CopyBlockFromLibrary (Library fromLibrary,
char* fromBleck};

CONTROLLED DISTRIBUTION COPY | ROGHIMENT | Control WORKS
1.Y IF COLOUR STAMPED ON

1
TROL SHEET. CDL Object Manager

EUROTHERM | g| [sommowes

© Copyright 1992 Furotherm Limited HP024674C301

SHT.

15

rlassg Project @ public Library

{
/. A project contains a Library, and can alsc have
/| Resource {and later Configuration} ‘blocks’

piblzc:
bacl IsProject(} {return TRUE;}

A Step requires special treatment and is a specialisation of a CDLLangElement. A step has methods to add
and delete from its action list (limited to one action for now), and to retrieve the actions. Note that addition
of sctions is by name, so the action can be separately defined. It also has methods to get the transitions io
and from the step. A step has no CDL buffer.

A Transition is another specialisation of 2 CDLLangElement allowing to and from steps to be added and
retieved. Note that addition of these is by name so the steps can be separately declared.

Steos and transitions can be retrieved from the parent CDLLangklement by name.

3.1 Memory Management

Dekting objects has no side effect such as saving, or validating any associated CDL; there are explicit methods
for anyv of these operations; deletion is purely for memory manangement.

Deleting the ObjStorelnterface object will cause all memory allocated by the object manager to be freed. All
peinters to any iaterface objects will be invalid.

Deleting a Project or Library object will cause all memory associated with that object to he freed, so all
pointers retrieved from that object will be invalid.

Deleting a Block object will cause all memory allocated with that object (i.e all sub-objects) to be free. Any
poiaters retrived from the Block object will be invalid.

No other objects should be deleted by editors.

4 Examples of using the interface

This section tries to outline how to use the objects defined above to perform varicus standard functions.
Evary process using the object manager must have one (or more?) ObjStorelnterface object.

4.1 Library and Project management

4.1.1 Listing Projects, Libraries

Us= the ListAllProjects or ListAliLibraries method on the ObjStorelnterface object.

CONTROLLED DISTRIBUTION COPY | ROGUMENT) conpeol wORKS
7Y IF COLOUR STAMPED ON 1
{ROL SHEET. CBL Object Manager

-“E U R O T H E R M E i DOCUMENT NUMBER ‘SHT.

© Copyright 1992 Eurotherm Limited HP{24574C301 16

TR

v

class €DLLangElement

{
public:
canst CbLInfo info; // e.g. Function Block
/i COL fragment can (oldStart, Transition, or POU bedy
Tirtaal CDLBuffer* GetCDLBuffer {(}:
/{ returms true if successful. Errors go
// te the error stream of the associated IndependentEditable
// object.
virtual bool} ReplaceCDLBuffer (CDLBuffer #);
// hpplies to any CDL. object e.g verifies a function
// bleck body, a cold start value, a SFC. Errors
// reported in error stream of owning independent
// editable.
virtaal bool Validate (O;
// attribute / property handling
char= GetAttrOrPropValue (char* name, bool& isAttr);
rool ReplaceAttrOrPropValue {char* name, char* value);
teol DeleteAttrirProp(char+ name);
// On-line

canst SetOfValue* GetLiveValue();

/7 return the Element for a dependent element
// e.g a parameter of the block, or block

// instance

{DLLangElement* GetElement (char* name);

// Find the set of elements
¢DLInfolListIterator* ListElement (CDLInfolptionsSet options):

1

CONTROLLED DISTRIBUTION COPY | ROGRMENT | Control WORKS
““LY IF COLOUR STAMPED ON

1
~ROL SHEET. CDL Object Manager

~EUR()-I-HERIV] EI DOCUMENT NUMBER

© Coprright 1992 Eurotherm Limited HP024674C301

SHT.

17

L we

// smallest stand alone edit-able object
// i.e. block function action service resource

clzss IndependentEditable : public CDLLangElement
{

purlic:
ronst CDLBodyType bodyType; // e.g. SFC bady
TrrorStream* errorSirean;

ool AddElement (CDLInfok info):
‘aol DeleteElement {(char* name);

./ xick off separate edit session (e.g. for an ACTION inside a SERVICE)
a0l EditElement (char# name);

Irep= GetStepElement (char+ name);
“ransition* GetTransitionFlement (char# name);

./ Om line
%00l OnLine{char* address);
w00l OffLine();

cliss Block : public IndependentEditable
{

private:

pudlic:
500l Rename (char* name);
3001 Build (ErroerStream+);

300l UnBuild (ErrorStream* };

06l Save {bool Verifyl):

CONTROLLED DISTRIBUTION COPY | RGialENT | Control WORKS
°NLY [F COLOUR STAMPED ON

1
TROL SHEET. CDL Object Manager

i EUROTHERM Ei DOCUMENT NUMBER

L© Copyright 1992 Earetherm Limited HP(24674C301

SHT.

18

class Step @ public CDLLangElement
{
public:
heal AddTohctionList (char* name,
hctionQualifier gual, int pesition);
msol DelzteFromActionList (int position);
/= LATER
bial ChangeActionListOrder (int from, int to); */
niol SetictionQualifier (char* name, Actionfualifier gual);
t-tienlistIterator* GetActionlist (;

gzringlistlterator* GetTransitions {(beol from /= alse to */);
/¢ There is no buffer for steps

virtmal CDLBuffers GetCDLBuffer () {return HULL;}
virtmal bool ReplaceCDiBuffer (CDLBuffer =) {return FALSE: }

et

lzss Transition : public CDLLangElement

0

peblic:
taol SetTeSteps {(char** name);
tool SetFromSteps (char+* name};

SirimglistIterators GetSteps (bool from /* else to */)3

Lo
N

4.1.2 Open Projects or Library

Us the OpenLibraryOrProject of the ObjStorelaterface object passing the name of the library or project,
and retrieving a pointer to a library or project object.

4.1.3 Creating a Project or Library

s the CreateLibraryOrProject method of the ObjStorelnterface object passing the name of the new library
or oroject. a bool to indicate it it is a project and the list of shared librares. The method returns a new library
or project object.

4.1.4 Copy Project or Library

Uss the CopyProjectOrLibrary method on a Library object passing the narne of the new library and a bool
to ‘ndicate whether or not merging with an existing library is allowed.

4.1.5 Rename Project or Library

Use the Rename method on a library object, passing the new name.

CONTROLLED DISTRIBUTION COPY | ROGMENT | Control WORKS
"NLY IF COLOUR STAMPED ON

1
TROL SHEET. CDL Object Manager

“ E U R 0 T H E R M E I DOCUMENT NUMBER SHT.

© Copyright 1992 Eurctherm Limited BP024674C301 16

4,40 Pleieie Froject or Liorary

T"ss the Delete method on the library or project object.

4.1.7 Build Project or Library

"« the Build method on the Library or Project object, passing an ErrorStream for build errcr reporting.

4.1.8 ¥nBuild Project or Library

T"s: the UnBuild method on the Library or Praject Object.

4.2 Block Management
4.9.1 Find Block from Type Name

s the LocateBlockinLibraryList method on a Library object passing the type name of the biock. The return
is 112 name of the library the block is in (which allows the library object to be retrieved and then the associated
block objert).

4.2.2 List Blocks in current Project

Uz the ListBlocks on a Library object, passing in an empty options set.

4.7.3 List Blocks given Project, Library

Resrieve the Library/Project from the ObjStorelnterface object and then list its blocks.

4.2.4 Create Block

C2il the CreateBlock method for the Library/Project giving the options for creation (e.g the type of the block,
{Resource. Program, Function Block) and the name of the editor for the block.

4.2.5 Copy Block from another Library

(il the CopyBlockFromLibrary on a iibrary or project object.

4.2.6 Rename Block

Orly blocks that are being edited can be renamed; the editor is given the Block object after an EditBlock call
on the Library/Project object, and then the Rename method on the Block object can be used.

CONTROLLED DISTRIBUTION COPY | ROV | Control WORKS
ANLY JF COLOUR STAMPED ON 1
TROL SHEET. CDL Object Manager

E U R 0 T H E R M E I DOCUMENT NUMBER SHT.

© Copyright 1992 Eurctherm Limited HP0O24674C301 20

TR we

4.2.7 Open Block for browsing template

N supported at present. the block must be opened for editing.

42 8 Delete Block

Bircks that are being edited can be deleted; the editor is given the Block object after an EditBlock call on
ths Library/Project object, and then the Delete method on the Block object can be used. Alternitavely the
DseteBlock method on the Library/Project object can be used.

2.8 Build Block

Onlv blocks that are being edited can be directly built; an editor can call the Build method on a Block object.
Aermatively the whole of a Project or Library can be build.

4.2.10 Get a Block’s dependencies

(iven a block name and a set of options to match (e.g look for only Function Blocks) the ListBlockDependencies
methed on a Library/Project will return the block information about blocks a block depends on.

Srould this be only direct dependencies? Or indirect?
4.3 Block Editing

4.3.1 Open Block for editing

Call the EditBlock method on a Library/Project. The appropriate editor will be invoked using the Editor
object store in the ObjStorelnterface object.

4.3.2 List VARS (VAR_IN, VAR OUT, VAR.INOUT, VAR, SERVICES)

Uze the ListElement method with associated options on any CDLLangFElement object. CDLLangklement
objects are retrieved by name from any CDLLangElement object {and hence Block , Step, Transition and
IrdependentEditable object).

4.3.3 Delete Interface element

Cal! the DeleteElement method on an IndependensEditable object, passing the element name.

4.3.4 Add Interface element

Call the AddElement method on an IndependentEditable object, passing a CDLInfo structure.

CONTROLLED DISTRIBUTION COPY | ROGradn T | Control WORKS
~NLY IF COLOUR STAMPED ON 1
TROL SHEET. CDL Object Manager

] E U R 0 T H E R M E I DOCUMENT NUMBER SHT.

© Copyright 1992 Eurotherm Limited HP024674C301 21

4.3353 Save block

Cal’ the Save method on a Block object.

4.36 Open body for editing

Any IndependeniEditable (and hence Block) may have an element that itself can be edited, by calling the
Fdi:Element method passing the name of the element to be edited.

4.3.7 ST editing

Any CDLLangElement object apart from steps and any action, service or function block whose body is defined
as zn SFC. has an CDL text buffer that can be directly retrieved for text editing.

4.3.8 Get ST bufler

Call the GetCDLBuffer method on a CDLLangElement object.

4.3.8 Replace ST buffer

Cal the ReplaceCDLBuffer method on a CDLLangElement object. The oid buffer will be deleted.

4.3.10 Validate ST buffer

The Validate method on any CDLLangElement will parse and Validate any associated CDL buffer.

4.3.11 Attributes

Any CDLLangELement object has a set of attributes that can be manipulated. Object that are VAR REF-
ERENCEs additionally have a set of built in properties.

4.3.12 Add attribute

Call the ReplaceAttrOrPropValue method on a CDLLangElement object.

4.3.13 Delete attribute

Call the DeleteAttrOrPropValue method on a CDLLangElement object.

DOCUMENT

CONTROLLED DISTRIBUTION COPY | REVISION ControtWORKS
7Y IF COLOUR STAMPED ON 1
IROL SHEET. CDL Object Manager

E U R 0 T H E R M E I DOCUMENT NUMBER SHT.

© Copyright 1992 Eurctherm Limited HP024674C301 22

DI EEr

4.3.14 Find attribute

Cal the GetAttrOrPropValue method on a CDLLangElement object, passing the name of the attribute to get
itz siring value.

4.3.15 SFC Editor

Steos and Transitions are objects that can be retrieved from IndependentEditable objects whose body 1s
defned by an SFC.

4.3.16 List 5TEPs in 5FC

Cal the ListElemnent method in a CDLLangElement object passing options to ensure only steps are selected.

4.3.17 List TRANSITIONSs

C&l the ListElement method in a CDLLangElement object passing options to ensure only transitions are
selcted.

4.3.18 Verify SFC body

The Validate method on a IndependentEditable will validate any SFC definition, (along with action bodies
eicl.

4.3.19 Add Step

Call AddElement on a Independent Editable object, declaring it as a step.

4.3.20 Get Initial Step

Search for an initial step type using the ListElement method on a CDLLangElement.

4.3.21 Delete Step

Czil DeleteBkement on an IndependentEditable object.

4.3.22 Change Action modes

Retrive the Step object by name using the GetStepliement method on an IndependentEditable object, and
then use the SetActionQualifier method on the Step object.

CONTROLLED DISTRIBUTION coPY | DOCUMENT 1} ot ol WORKS
C REVISION
1Y IF COLOUR STAMPED ON 1
TROL SHEET. CDL Object Manager

R E U R 0 T H E R M E I DOCUMENT NUMBER SHT.

© Copyright 1992 Eunrotherm Limited HP(24674C301 23

4.323 Get Actions for Step

Cai the GeiActionList method on a Step object. Note this returns a set of namesand qualifiers.

4£.3224 Get Transitions from Step

Ca’ the GetTransitions method on a Step object, passing the bool parameter with value true. Note this
rerirns a set of names.

4.325 Get Transitions to Step

Cal the GetTransitions method on a Step object, passing the bool parameter with value from. Note this
retirns a set of names.

4.3.26 Get to/from Steps for Transition

Trensitions are retrieved from a IndependentEditable object using the GetTransitionElement method. From
s tansition object the to/from steps are retrieved sing the GetSteps method.

4.3.27 Add transition

“Trinsitions are declared using the AddElement method on a IndependentEditable object.

4.3.28 Change transition

The CDL buffer for a transition can be edited using the GetCDLBuffer method on a CDLLangElement abject.
Trensitions may be deleted using the DeleteElement method on an IndependentEditable object.

4.3.29 Add Action

Acsions are declared using the AddElement method on a IndependentEditable object.

4.3.30 Delete Action

Actions are deleted using the DeleteElement method on a IndependentEditable object.

4.3.31 Cold start values

Ary CDLLangElement that may have its cold start value set has a CDL buffer which can be edited using the
GetCDLBuffer method on a CDLLangElement object.

m«—+0004—_m

DOCUMENT

CONTROLLED DISTRIBUTION COPY | pEVISION Control WORKS
TNLY IF COLOUR STAMPED ON !
TROL SHEET, CDL Object Manager

i EUROTHERM El DOCUMENT NUMBER SHT.

© Copyright 1992 Eurotherm Limited HPO24674C301L 24

12,1

25,1
9.2
x1
12,4
9,7
xw 127
12,6
4.11 T 12,11 22,11
8,13 18,13
x3 x4
920 |
5
g 12,22
25,24
x6
Figure 1: An SFC
CONTROLLED DISTRIBUTION COPY | ROGIIMENT | ControlwORKS
ANLY IF COLOUR STAMPED ON 1
TROL SHEET. CDL Object Manager
E U R O T H E R M E ! DOCUMENT NUMBER SHT.
HP024674C301 25

© Copyright 1992 Eurotherm Limited

