
PLCopen
Standardization in Industrial Control Programming

PO Box 2015, NL - 5300 CA Zaltbommel, Netherlands, Tel: *.31.418.541139, Fax: *.31.418.516336

IEC 61131-3: a standard programming resource

IEC 61131-3 is the first real endeavor to standardize
programming languages for industrial automation. With
its worldwide support, it is independent of any single
company.

IEC 61131-3 is the third part of the IEC 61131 family.
This consists of:
• Part 1: General Overview
• Part 2 Hardware
• Part 3 Programming Languages
• Part 4 User Guidelines
• Part 5 Communication

There are many ways to look at part 3 of this standard.
Just to name a few:
• the result of the Task Force 3, Programming

Languages, within IEC TC65 SC65B
• the result of hard work by 7 international

companies adding tens of years of experience in
the field of industrial automation

• approx. 200 pages of text, with 60-something
tables, including features tables

• the specification of the syntax and semantics of a
unified suite of programming languages, including
the overall software model and a structuring
language.

Another elegant view is by splitting the standard in two
parts (see figure 1):
1. Common Elements
2. Programming Languages

The IEC 1131-3 Standard

Common Elements

Programming Languages

Let’s look more in detail to these parts:

Common Elements
Data Typing
Within the common elements, the data types are
defined. Data typing prevents errors in an early stage. It
is used to define the type of any parameter used. This
avoids for instance dividing a Date by an Integer.
Common datatypes are Boolean, Integer, Real and Byte
and Word, but also Date, Time_of_Day and String.
Based on these, one can define own personal data
types, known as derived data types. In this way one can
define an analog input channel as data type, and re-use
this over an over again.

Variables
Variables are only assigned to explicit hardware
addresses (e.g. input and outputs) in configurations,
resources or programs. In this way a high level of
hardware independency is created, supporting the
reusability of the software.
The scopes of the variables are normally limited to the
organization unit in which they are declared, e.g. local.
This means that their names can be reused in other
parts without any conflict, eliminating another source
of errors, e.g. the scratchpad. If the variables should
have global scope, they have to be declared as such
(VAR_GLOBAL). Parameters can be assigned an
initial value at start up and cold restart, in order to have
the right setting.

Configuration, Resources and Tasks
To understand these better, let us look at the software
model, as defined in the standard (see below).

Access path

Execution
control path

FBTask

Program Program

FB FB

Task

Program

Task

Program

FB FB

Task

Resource Resource

Configuration

Function
Block

At the highest level, the entire software required to
solve a particular control problem can be formulated as
a Configuration. A configuration is specific to a
particular type of control system, including the
arrangement of the hardware, i.c. processing resources,
memory addresses for I/O channels and system
capabilities.

Within a configuration one can define one or more
Resources. One can look at a resource as a processing
facility that is able to execute IEC programs.
Within a resource, one or more Tasks can be defined.
Tasks control the execution of a set of programs and/or
function blocks. These can either be executed
periodically or upon the occurrence of a specified
trigger, such as the change of a variable.
Programs are built from a number of different software
elements written in any of the IEC defined languages.
Typically, a program consists of a network of
Functions and Function Blocks, which are able to
exchange data. Function and Function Blocks are the
basic building blocks, containing a datastructure and an
algorithm.

Let’s compare this to a conventional PLC: this contains
one resource, running one task, controlling one
program, running in a closed loop. IEC 61131-3 adds
much to this, making it open to the future. A future that
includes multi-processing and event driven programs.
And this future is not so far: just look at distributed
systems or real-time control systems. IEC 61131-3 is
suitable for a broad range of applications, without
having to learn additional programming languages.

Program Organization Units
Within IEC 61131-3, the Programs, Function Blocks
and Functions are called Program Organization Units,
POUs.

Functions
IEC has defined standard functions and user defined
functions. Standard functions are for instance
ADD(ition), ABS (absolute), SQRT, SINus and
COSinus. User defined functions, once defined, can be
used over and over again.

Function Blocks, FBs
Function Blocks are the equivalent to Integrated
Circuits, ICs, representing a specialized control
function. They contain data as well as the algorithm, so
they can keep track of the past (which is one of the
differences w.r.t. Functions). They have a well-defined
interface and hidden internals, like an IC or black box.
In this way they give a clear separation between
different levels of programmers, or maintenance
people.
A temperature control loop, or PID, is an excellent
example of a Function Block. Once defined, it can be
used over and over again, in the same program,
different programs, or even different projects. This
makes them highly re-usable.
Function Blocks can be written in any of the IEC
languages, and in most cases even in “C”. It this way
they can be defined by the user. Derived Function
Blocks are based on the standard defined FBs, but also
completely new, customized FBs are possible within
the standard: it just provides the framework.

The interfaces of functions and function blocks are
described in the same way:

FUNCTION_BLOCK Example

VAR_INPUT:
 X : BOOL;
 Y : BOOL;
END_VAR

VAR_OUTPUT
 Z : BOOL;
END_VAR

 (* statements of functionblock body *)

END_FUNCTION_BLOCK

The declarations above describe the interface to a
function block with two Boolean input parameters and
one Boolean output parameter.

Programs
With the above-mentioned basic building blocks, one
can say that a program is a network of Functions and
Function Blocks. A program can be written in any of
the defined programming languages.

Sequential Function Chart, SFC

Step 1 N FILL

Step 3

Step 2 S Empty

Transition 1

Transition 2

SFC describes graphically the sequential behavior of a
control program. It is derived from Petri Nets and IEC
848 Grafcet, with the changes necessary to convert the
representation from a documentation standard to a set
of execution control elements.
SFC structures the internal organization of a program,
and helps to decompose a control problem into
manageable parts, while maintaining the overview.
SFC consists of Steps, linked with Action Blocks and
Transitions. Each step represents a particular state of
the systems being controlled. A transition is associated
with a condition, which, when true, causes the step
before the transition to be deactivated, and the next step
to be activated. Steps are linked to action blocks,
performing a certain control action. Each element can
be programmed in any of the IEC languages, including
SFC itself.
One can use alternative sequences and even parallel
sequences, such as commonly required in batch

applications. For instance, one sequence is used for the
primary process, and the second for monitoring the
overall operating constraints.
Because of its general structure, SFC provides also a
communication tool, combining people of different
backgrounds, departments or countries.

Programming Languages
Within the standard four programming languages are
defined. This means that their syntax and semantics
have been defined, leaving no room for dialects. Once
you have learned them, you can use a wide variety of
systems based on this standard.
The languages consist of two textual and two graphical
versions:
Textual:

• Instruction List, IL
• Structured Text, ST

Graphical:

• Ladder Diagram, LD
• Function Block Diagram, FBD

Instruction List (IL) Structured Text (ST)

Function Block Diagram (FBD) Ladder Diagram (LD)

LD A

ANDN B

ST C

C:= A AND NOT B

 A B C

-| |--|/|----------------()

AND

A C

B

In the above figure, all four languages describe the
same simple program part.
The choice of programming language is dependent on:
• the programmers’ background
• the problem at hand
• the level of describing the problem
• the structure of the control system
• the interface to other people / departments

All four languages are interlinked: they provide a
common suite, with a link to existing experience. In this
way they also provide a communication tool,
combining people of different backgrounds.

Ladder Diagram has its roots in the USA. It is based on
the graphical presentation of Relay Ladder Logic.
Instruction List is its European counterpart. As textual
language, it resembles assembler.
Function Block Diagram is very common to the
process industry. It expresses the behavior of functions,
function blocks and programs as a set of interconnected
graphical blocks, like in electronic circuit diagrams. It
looks at a system in terms of the flow of signals
between processing elements.

Structured Text is a very powerful high-level language
with its roots in Ada, Pascal and “C”. It contains all the
essential elements of a modern programming language,
including selection branches (IF-THEN-ELSE and
CASE OF) and iteration loops (FOR, WHILE and
REPEAT). These elements can also be nested.
It can be used excellently for the definition of complex
function blocks, which can be used within any of the
other languages.

Example in ST:
 I:=25;
 WHILE J<5 DO
 Z:= F(I+J);
 END_WHILE

 IF B_1 THEN
 %QW100:= INT_TO_BCD(Display)
 ENDIF

 CASE TW OF
 1,5: TEMP := TEMP_1;
 2: TEMP := 40;
 4: TEMP := FTMP(TEMP_2);
 ELSE
 TEMP := 0;
 B_ERROR :=1;
 END_CASE

Top-down vs. bottom-up

Common Elements

Programming Languages

Top Down

Bottom Up

Also, the standard allows two ways of developing your
program: top down and bottom up. Either you specify
your whole application and divide it into sub parts,
declare your variables, and so on. Or you start
programming your application at the bottom, for
instance via derived functions and function blocks.
Whichever you choose, the development environment
will help you through the whole process.

Implementations
The overall requirements of IEC 61131-3 are not easy
to fulfill. For that reason, the standard allows partial
implementations in various aspects. This covers the
number of supported languages, functions and function
blocks. This leaves freedom at the supplier side, but a
user should be well aware of it during his selection
process. Also, a new release can have a dramatically
higher level of implementation.

Many current IEC programming environments offer
everything you expect form modern environments:
mouse operation, pull down menus, graphical
programming screens, support for multiple windows,
built in hypertext functions, verification during design.

Please be aware that this is not specified within the
standard itself: it is one of the parts where suppliers can
differentiate.

Conclusion
The technical implications of the IEC 61131-3 standard
are high, leaving enough room for growth and
differentiation. This makes this standard suitable to
evolve well into the next century.
IEC 61131-3 will have a great impact on the whole
industrial control industry. It certainly will not restrict
itself to the conventional PLC market. Nowadays, one
sees it adopted in the motion control market, distributed
systems and softlogic / PC based control systems,
including SCADA packages. And the areas are still
growing.
Having a standard over such a broad application area,
brings numerous benefits for users / programmers. The
benefits for adopting this standard are various,
depending on the application areas. Just to name a few
for the mindsetting:
• reduced waste of human resources, in training,

debugging, maintenance and consultancy
• creating a focus to problem solving via a high level

of software reusability
• reduced misunderstanding and errors
• programming techniques usable in a broad

environment: general industrial control
• combining different components from different

programs, projects, locations, companies and/or
countries

PLCopen enhancements of the Standard
PLCopen is a vendor- and product-independent
worldwide association supporting IEC 61131-3. By
implementing this standard on many program
development environments, users can move
between different brands and types of control with
very little training and exchange applications with a
minimum of effort.
The organization PLCopen works on the promotion
of the usage and/or supply of the standard, as well a
to enhance the standard in a technical sense. This
latter includes certification and exchange.
Members of PLCopen can participate in the
committees, and as such have upfront information, a
stronger identity, as well as influence on the results.
In addition, they can use the defined PLCopen
logo’s for their promotion. The committees working
within PLCopen and their results are described in
short form hereunder.

Technical results
The Technical Committees, TCs, with
representatives of PLCopen members, work on
specific items.
Within TC1 - Standards, PLCopen collects
proposals from its members for the IEC 65B WG7
working group, develops a joint position, and
distributes related information. This was specifically
focused to the second edition of the standard, which
was released at the beginning of 2001.

TC2 - Functions defines common libraries of
Function (Blocks) for specific application areas. An
example is the library definition of Function Blocks
for Motion Control. This standardization couples
motion control in a logical way to the industrial
control. As such, it provides a common look-and-
feel towards the users: programmers as well as
installation and maintenance people. With multiple
implementations of this library, scaling of the
control system is much easier, even if there are
different architectures and / or controller brands
used. The exchange of part of the programs via the
PLCopen Reusability Level (see below for more
information) plays an essential role here too.

Certification & Conformity testing
TC3 - Certification defines a certification system
for PSEs, Program Support Environments
(development environments). Each PSE can be
tested to show that it complies with a PLCopen
specified subset of the IEC 61131-3 standard. This
standard contains a large number of so called
feature tables and PLCopen has defined which
elements of these tables must be supported to fulfill
compliancy requirements. In addition, PLCopen
extended the standard to support the reusability of
user derived Function Blocks between PSEs.

Conformity Level, CL

With the broad range of application areas for IEC
61131-3 not all implementations use exactly the
same data types. To accompany this, the
certification according to Conformity Level, CL,
implies that the supplier of a PSE selects the data
types supported by his product matching his
compliance statement. All supported IEC features
are tested. This means that although the test is a
Yes/No test (conformant or non-conformant), there
can be differences between two certified products.
These differences can influence the reusability of
user derived function blocks.
The total number of data types as specified in the
Standard amounts to 26 (table 10 and 12 of the
Standard). These range from simple digital Yes/No
(BOOL) to potential complex structures Therefore,
CL has 26 options: data type supported or not-
supported. Only the supported data types are used
for testing.
In addition Reusability Level, RL, is dedicated to
making the programming units functions and
function blocks reusable on a different PSE. This is
done via exchange in a plain textual format of the
language Structured Text, ST. For representation in
other languages, a conversion tool to or from ST
can be included. This is a major, but natural,
contribution of PLCopen to the IEC 61131-3
standard.

Historically there exists a lower class called Base
Level, defining a core kernel per language of the
standard. Although rather restricted, it is feasible to
develop applications based on it. Base Level
provides an entrance level for the suppliers,
showing their commitment to the standard. For the
users it provides a normalized interpretation of the
standard, especially important if they have to work
with systems of different vendors.

Detailed specifications of most of the IEC 61131-3
languages are already finished. Work is in progress
for the remaining languages. The compliance test
procedure and the accreditation procedure for test
laboratories have been established. Independent test
laboratories have been accredited and an increasing
number of products have been certified. For a
complete list please refer to the website
www.plcopen.org.

TC4 - Communications works on the relation
between communication and programming
languages, like the mapping of Profibus and
CANopen via IEC 61131-5 onto IEC 61131-3.

TC5 - Safe Software prepares recommendations
for applying the IEC 61131-3 standard to and

adapting it for safety related applications, esp.
focused to the new safety standards IEC 61408 and
61411.

TC6 - XML works on the specification of XML
schemes for all languages, as well as full projects.
This specification will provide the basis for
exchange, as well as coupling to other software
tools, including higher-level development tools,
documentation tools, and verification tools.

Promotional Events
An important tasks of PLCopen is to inform users /
programmers about standardized industrial control
programming, via:
• the PLCopen website: www.plcopen.org;
• publication of a free electronic and printed

newsletter, called “PLCopening”;
• publications in the press;
• participation at trade shows and conferences;
• organization of conferences, like the ICP in

October, and seminars.
The Promotional Committees PC1, PC3 and PC4
support these activities.
Members of PLCopen are better seen on the market
as a supporter of open standards.

PC2 - Common training has defined a common
basis for training. This includes certification. In this
way, certified training centers for training on IEC
61131-3 can be easily identified.

Benefits of Membership
A membership of PLCopen has many benefits for
vendors, and institutes. PLCopen strongly supports
the user community. For this it created additional
membership categories.
By joining PLCopen, one makes a clear statement
about your commitment to IEC 61131-3 standard,
become better visible as such, can use the PLCopen
logo’s, and can have upfront information as well as
influence on the work done.

For on-going information, please check the website
www.plcopen.org, as well as the electronic
magazine to which you can subscribe at this
website.

