EUROTHERM

The Resource Manager

Implementation Guide

@ Copyright 1995 Eurotherm Controls Limited.
HA024105C100



Revision History

Revision

Date

Changes

A

February 1995

Drafi ( Incomplete )

HA024105C100




Contents

TABLE OF FIGURES 6
1. INTRODUCTION 7
2. RELATED DOCUMENTS 8
3. DATABASE 8
3.1 Creation 9
3.2 Templates ]
3.2.1 Bounds 11
3.3 The Resource 11
3.3.1 Checksum i2
3.3.2 VAR_ACCESS 12
3.4 Resource Level Objects 12
3.5 Instance Pata 13
3.6 GAD Tables 13
3.7 Packed ARRAYs 14
3.8 IEC1131-3 Languages 14
4. GENERAL 14
4.1 Types i4
4.2 Instance Data 15
4.3 Shape 15
4.4 Fast GADs i5
4.5 STRINGs 16
4.6 Value Descriptors i6
4.7 Doubly Linked Lists 16
4.8 Sets 16 :
5. GENERIC ADDRESS DESCRIPTORS 17
5.1 GAD Element Types 18

The Resource Manager - Impementation Guide 3



5.1.1 Numeric i8

5.1.2 String i8
5.1.3 Control i8
5.1.4 RLO Inst 18

5.2 Fast GADs 19
6. NAVIGATION 19
6.1 The Refer Class 19
6.1.1 Refer Scis 20
6.1.2 Refer Stacks 20

6.2 The Navigation Class 20
7. THE DATABASE LOADER 20
7.1 Compiled Object to Run-Time Batabase Linkages A
7.2 Tracing the Load 21
7.3 Linking Cross References 21
7.4 The Use of Files 22
8. TASKS 22
8.1 State Machine 22
8.1.1 Load Stale 23
8.1.2 Run State 23
3.1.3 Data State 24

8.2 The TASK Block 24
8.3 Function Lists 24
8.3.1 Order 25
8.3.2 Uniqueness 25
%.3.3 Condition 25

8.4 Debug 25
9. RESOURCE MESSAGING PROTOCOL 25
9.1 Message Objects 26
9.2 Message Types 27
9.2.1 Read Template 27
9.2.2 Simple Read 28
9.2.3 Simple Write 28
9.2.4 WriteRead 28
9.2.5 Service 30
9.2.6 Service User 30
9.2.7 Read Description 31
9.2.8 Debug Conumand 3l
9.2.9 Debug Output 32

4 HA024105C100

B RCT



10. RESOURCE MESSAGE QUEUE

33

11. VAR REFERENCES 34
11.3 Outstanding Operation Table 34
11.2 Pending Service Table 35

12. EMBEDDED DEBUG 36
12.1 Debug Gutput 36
12.2 Pebug Session 36
12.3 Ping 36
12.4 Trace and Break 36

12.4.1 Resource Manager Class Debug 36
12.4,2 RMP Messages 37
12.4.3 Source Code Debug 37
12.5 Resource Database Interrogation 37

13. ST COMPILER INTERFACES 38
13.1 Var References 38
13.2 Source Code Bebug 38
13.3 SERVICEs 39

14. THE SOURCE CODE 39
14.1 Where to Find It 39
14.2 Order of compilation 41
14.3 Pre-processor 41

14.3.1 Target 41
§4.3.2 Options 41
15. GLOSSARY OF TERMS 43
INDEX 44
The Resource Manager - Impementation Guide 5

R ¥



Table of Figures

FIGURE 1 - DATABASE CREATION PROCESS 1.1t ieieeie oo oot ees et et aa et ae e e e e eeae s s sa s ey
FIGURE 2 - TEMPLATE CLASS HIERARCIIY «.ototiiioiieiii i oot e e me e e e ccamm i st a ey g s s e
FIGURE 3 - EXAMPLE OF GADSIN ARESOURCE. ..ottt
FIGURE 4 - Task CLass(Esy HIERARCHY

FIGURE 5 » TASK STATE MATHINE L ittt ot e ettt e e et e a i e e
FIGURE 6 - RMP WRITE READ BEQUEST Cr.AS% HIERARCHY .

FIGURE 7 - RMP WRITE READ RESPONSE CLASS HIERARCEY 1o vvirveeeeiceimeireiaeiemanacvctreirasrenesnesee s e e 28
FIGURE § - RESOURCE MESSAGE QUEUE ENTRY CLASS HIERARCHY ..o, o 33
FIGURE 9 - RESOURCE MESSAGE QUEUE CLASS HIERARCHY (.ot oo e 33
FIGURE 10 ~ VAR BREFERENCE CLASS HIERARCHY L. i i iiiiiisn e reomnmnan s rbsrebeas s rsessmms et cannineee 34
FIGURE 11 - VAR REFERENCE SERVICE CLASSES ..ot e 34
FIGURE |2 - OOT CLASS HIERARCHY ..ottt et e et et e ter e e s e et r a2 r e e s s e 35

6 HA024105C100



1. Introduction

This document contains notes on how the Resource Manager software is organised and used. It
contains descriptions of the data structures and classes used.

This document is intended as a supplement to the design documentation and not to be complete in
itself. The primary audience for this docament is for software engineers intending to port, modify or
just simply understand the code of the Resource Manager.

It is assumed ibhroughout that the reader is familiar with the IEC1131-3 standard and the basic
principles of the Resource Manager.

The Resource Manager is implemented in C++ with C interfaces for the 5T compiler.

The document contains diagrammatic representations of the more complex class hierarchies and lists
the source code modules related to each subject. It also includes an index which includes all class and
structure definitions referenced in the docwment. This document is not intended to be exhaustive in 1ts
coverage of the Resource Manager code but merely fo give an overview and some “pointers” info the
code.

This document refers to the source code that forms the Resource Manager Version 2.2 only.

The Resource Manager - Impementation Guide 7




2. Related Documents

HP024105 Resource Manager Release ! Specification
HP024105C300 | Resource Manager Design and Architecture
HP024105C301 Resource Manager Communications Messaging Services
HP024105C304 Rescurce Manager Var References

HP024105C303 Resource Manager GAD Format

FP024105C306 | Resource Manager Enhancements to Var References
HPO24105C307 | Resource Manager Resource Services

HP024105C308 Resource Manager Resource Transactions

HPO24105C309 Resource Manager Enhanced Resource Level Functionality
HPO24105C322 Resource Manager Communications Access
HPO24105C323 Resource Manager Interpreted Resource Levels
HA024105C001 | Resource Manager A Guide to Var Referenoces
HA(24105C002 | Resource Manager A Guide to the Resource Debugger
HA024105C003 | Resource Manager A Guide to Tuning the Resource
HA024105C007 | Resource Manager A Guide io the Resource Loader
HA024105C008 | Resource Manager A Guide to the Resource Task
IEC1i31-3 Programmable Controllers | Programming Languages

8 HA024105C100

CETEE R

W



3. Database

The Resource database is largest and most important part of the Resource Manager.

3.1 Creation

The run-time database is generated {rom the output of the ST compiler / GCT from 2 nomber of
FUNCTION BLOCKs to form a RESOURCE, This procedure produces a simgle object module
containing C templates, GAD tables and the block bodies. This cutput is converted by the Resource
Manager loader into ihe run-time database. This process consists of the following -
s (enerate the C++ objects in the run-{ime database from the ST compiler cutput,
= Create the instance data for the RESOURCE.
»  Create all the additional run-time structures required for the RESOURCE.

= VAR REFERENCEs

e Outstanding Operation Tables

o Pending Service Tables

¢ Resource Message Queues

e Additional information for TASKs

« VAR ACCESS Tables
s Create RLO objects with method pointers back into the original object.

] —
A AL + ;{(&, Wl R T o

& LR W EC

i/

? \;M,fw gﬁj}@@»\;‘; £ o

The Resource M 9

ERE:305 1

E



Figure 1 - Database Creation Process

FUNCTION FUNCTION I RESOURCE I

BLOCK BLOCK

{ST Compiler i IS’I‘ Compiler f @mpiicr

¥ A
IOhjcc‘a Fite E {Object File

Linker E

|Linked RESOURCE

Resource
Loader

RESOURCE
Database

3.2 Templates
The RESOURCE database templates may be divided into a number of classes.

The first distinction that needs to be made is between type templates ( class TypeTemplate ) and

child templates ( class ChildTemplate ). A type template describes the type and not any instance of it.

The child tempiate describes an instance of a type. It is called a child template as it must be the child
of something in order for it to have been instantiated.

The second distinction that needs to be made is between simple and complex templates. A simple
template 1s one for a base [EC1131-3 type such as DINT which does not encapsulate any other types
or instances. A complex template is for something that contains ( or could contain ) other types, such
as FUNCTION_BLOCKs.

10 HA024105C100

TIEWE R

TR



The final component of a template that needs highlighting is bounds. A template has bounds if whai it
is referring to has some shape or dimensions, i.e. ARRAYs or STRINGs .

Figure 2 - Template Class Hierarchy .
?Template}

Childempiate

TypeTemplate

'CempiexChild

CompixBase

Resourceype_basel ]CompEexType ] iSimpleTypeWithBounds i ISimpleChildWithBounds| }ComplexChiEdWithBoundsi

. S
ResourceType |

3.2.1 Bounds
All ARRAYs and STRINGs have their “shape” defined by a Bounds class. The ferminology here is a
little confusing. The rank { a maximum of 6 ) of a bounded item is the number of dimensions ( class

Dimension ) it has. Each dimension is described in terms of a left and right-hand index.

e.g. ARRAY [I1..r1,12..r2] has a rank of 2 with an overall shape of (r1-11}*{r2-12) with dimensions
(11,r1) and {12,r2).

For STRINGs it should be noted that they can have a maximum of 5 dimensions ( i.e. maximun rank
5 ) as one dimension describes string size ( where [1 = 1, 12 < 255).

3.3 The Resource
The whole of the database is navigated from the top from the instance of the ResourceType class
pointed to by the global pointer TheResource. The shared memory area into which the whole of the

database is constructed has as it first location a pointer to TheResource.

The ResourceType contains -

. an array of RLOs { class RLObj ).
* the VAR_ACCESS definitions,
. a checksum ( and partial checksum caiculation )

The Resource Manager - Impementation Guide 11

R

S ]



3.3.1 Checksum

The RESOURCE contains a checksum which is a checksum of some of the invariant data in the
RESOURCE. This comprises all the templates.

At run time one TASK may verify the checksum, this is done in stages ( L.e. one RLO at a time ) and
a partial checksum is kept, i.e. the full checksun is checked every number of RLOs * TASK cycle.
If the checksum fails then the TASK unloads alf other TASKs.

3.3.2 VAR ACCESS

The Resource manager provides the IEC1131-3 YAR _ACCESS construct at the RESOURCE level,
uniike the IEC1131-3 which provides this at CONFIGURATION ¢ which is not currently supported }
and RLB Ievels,

A VAR_ACCESS is implemented as a character string of up to 20 characters in length.

For cach VAR_ACCESS ( class RdbAccessPath ) created the Resource Manager creaies a database
reference ( class Refer , see 6.1 ). The implication of this is that data access viaa VAR _ACCESS is
“faster” as the Refer does not get re-created each time. This provides faster access across RMP.

The set of VAR_ACCESS ( class RdbSetOfAccessPath ) is attached to the ResoureeType.

For each one of them a fast GAD is allocated with the RLO number = 0, and the Insiance number an
offset { from 1 ) into the RdbSetOfAccessPath.

VAR _ACCESS are buill on top of base { class RdbBaseAccessPath ) which it is intended can be
used as the base for other types of look ups into the resource database. Each of these in turns
references a instance of class RdbAccessNode which is just a re-badged Refer. To cater for the case
where we have many routes into the database through different RdbBaseAccessPaths it does itself
contain the RdbAccessNode but these are referenced from a poll { class RdbSetOfAccessNode )
which are attached to the ResourceType. In this way only one Refer is instanced even if there are
many “routes” to it. This in fact applies to VAR_ACCESS as well, if more than one VAR_ACCESS
references the same item only one RdbAccessNode is created. All this is because a Refer is a non-
triviai class and it is desired to keep down memory usage.

3.4 Resource Level Objects
‘Resource Level Objects ( RLO. ) may be divided into a number of different types :-

s Resource Level Blocks ( RLB ), i.e. FUNCTION _BLOCKs or PROGRAMSs which are
instantiated in a RESOURCE declaration.

» TASKs
VAR_GLOBAL declarations

A RLO is to be defined to be the unit of reloadability in the Resource Manager when this feature is
implemented.

12 HA024105C1H00

CUBTR R

T



3.5 Instance Data

All the insiance data for each RLO is allocated as a single contiguous biock of data which reflect the
data structure generated by the ST Compiler / GCT for the RLO.

The instance data for a block is divided up into the following 4 sections ( in this order } -

e An optional pointer to an array of VAR REFERENCE pointer for VAR REFERENCEs that
have been instantiated in this block. This pointer is assigned and the array allocated and initialised
during the loading of the database.

s The SFC data. This consists of SEC step variant data followed by the standard SFC information.

s The main ( and user visible } component containing the instance data for all the declared
IECH131-3 data.

e Any hidden instance data, usually only present on blocks which have bodies that have not been
written in an IEC1131-3 language € 1.2 C ).

3.6 GAD Tables

Each RLO has a GATD table, and each complex child of the RLO or its children has an entry in the
(GAD table. The GADY table is an array of GAD table entries. A GAD table entry ( class
GADTableEntry ) consists of the {following -

s A type template pointer
o An instance data offset, i.e. a pointer relative to the start of the instance data for the RLO.

The GAD table reflects a “flattened” view of the database. The database is flattened in such a way that
it reflects how the hierarchy would be walked starting form the top and walking as far down as
possible at each stage, i.c. depth, then breadth.

This is illustrated by comparing numerically a hierarchical view with a “flattened” view such as that
show below -

1 1.0
1.1 1.1
1.2 1.2
1.2.1 1.3
1.2.2 1.4
1.2.2.3 L5
1224 1.6
123 1.7
1.3 18
1.4 1.9
14.1 1.10
1.5 1.11

The above would also reflect full GADs against fast GADs

3.7 Packed ARRAYs

The ST compiler / GCT optimises structures of 8, 16, and 32 BOOLs to 1, 2 and 4 byte values
respectively. In order 1o handle these optimisations correctly the Resource Manager includes some
structures ( CDL_struct_8, CDL_struct_16, CDL_struct_32 ) so that they can be manipulated in a
target independent way.

The Resource Manager - Impementation Guide 13

SRR A



3.8 IEC1131-3 Languages

Once the database is created there is no explicit reference to which of the IEC1131-3 languages { ST,
SFC, FBD, LD, IL ) was used to generate a block, As everything ( ST, FBD, SFC ) is reduced to ST by
GCT it alt referred to as ST. It is possible to identify a block as being an SFC by virtue of having
STEP blocks inside but otherwise no information is avaiiable,

4. General

This seciion describes some general constructs used throughout the Resource Manager,

4.1 Types
The following basic types are used throughout the Resource Manager.

VarType - This is the type of an instance data item. This iakes values of the form tagBint. tagUsint,
tagFhlock etc.

VarMode - This defines the mode of an item. This contains a number of fields

MODE - This de_ﬁnes the IEC mode of the data and takes one of the following values :-
modeGLOBAL - An item defined in a VAR_GLOBAL section
modeINPUT - An item defined in a VAR_INPUT section
medeQUTPUT - An item defined in a VAR_OUTPUT section
modeINOUT - An item defined in a VAR_IN_OUT section
modeINTERNAL - An item: defined in a VAR section
modeINOUTP - An item defined in a VAR_INPUT_OUTPUT section, a

Eurotherm extension.
modePARENT - An item whose mode is defined by its parent or firs{ non
modePARENT ancestor.

modeEXTERNAL - An item defined in a VAR_EXTERNAL section

REF - This defines if the item is a VAR REFERENCE

WriteProtect - This defines if the writeProtect attribute was assigned from the
programming tool.

Rendezvous - If the item is a SERVICE then this defines if that SERVICE is a Rendezvous,
i.e. the ACCEPT keyword has been used.

Parent Is REF - This is a run-time bit that is only set in response to a RMP read template
request if an ancestor of the data item is a VAR REFERENCE

RETAIN - This bit is set if the item is specified using the RETAIN keyword.

Bits 7 6 5 4 3 2 i1 |0
Usage | RETAIN i ParentIs | Rendezvous Write Protect | REF MODE
REF

4.2 Instance Data

There are 2 basic general purpose structures for holding instance data, both of which are unions of all
the basic IEC1131-3 types. These are the CDL_Any_P and the CPL_Any_S unions, each of which
holds a single value. There is only one difference between the CDL_Any_P and the CPL_Any_S is
the way in which STRINGs are handied. In an CPL_Any_P the union holds a pointer ( hence P ) to
the string and the CDL_Any_S actually holds the value in a string buffer in the union.

14 HA024105C100

TR

i



In addition to the CDL_Any_P and CDL_Any_S structures there are Value_P and Value_S
structures which are encapsulations of the CDL_Any_ structures with the type ( VarType } of the
data element as well,

4.3 Shape

The type VarShape ( a unsigned 16 bit integer ) defines how many data items are being referenced.
This is most typicaily used to indicate the number of clements in an ARRAY, or else is I when the
item is not an ARRAY.

Examples -

ST shape
ARRAYI1. 4] OF DINT 4
ARRAYI[1.4,1 2}IOF DINT | 8
DINT I
STRING 1

4.4 Fast GADs

A Fast GAD ( FastGad_8 ) is a quick way of referring to a database item by exploiting the “flattencd”
nature of the database. The fields of a fast GAD are -

Field Type Description

RLO Inst | RLO Instlx { RLO number and “flatiened” child instance number
Elem Elementlx Child number

ElOrIx Flatindex A flattened array index

For a {full description of fast GADs see 5.2

4.5 STRINGs

IEC 1131-3 STRINGs are stored as an array of bytes where the first byte defines the length of the
string, the subsequent bytes are the string contents and then finally a NULL byte is appended. This
tast NULL byte is appended so that in contexts where it is known {hat the string contains a text string
then normal C string handling can be applied.

4.6 Value Descriptors

A value descriptor { ValDese_S ) is a concise form of the template and addressing information for a
database item, This contains the following information :-

Field Type Description

viype VarType Data type

vmode VarMode Data mode

shape VarShape | Number of data items referred to

Fastgad | Fastgad S | How to get to it quickly

The Resource Manager - Impementation Guide 15

TR TR

TUTEY



4.7 Doubly Linked Lists

One of the few general purpose classes employed in the Resource manager is a doubly linked list and
an associated iterator.

The doubly linked list ( class static_dlist ) is composed of a number of links ( class dlink ). Thisis a
fairly standard pair of classes except that the dlink also contains an entry pointer which allows the
link 1o “point” o something other than itself,

An interator class { diist_iterator } is also provided 1o iterate around the linked list.

4.8 Sels

There is a simple base class for implementing sets of objects { class SetOf ) with a maximum capacity
of 64k items. This is primarily used for generating sets of values { as Value P ) ( class SetQfVals )
with an associated iterator { class SetQfVaisTterator ) and sets of value descriptors { class
SetOfValDescs ).

The primary uses of {hese sets is for RMP messages.

5. Generic Address Descriptors

Every IEC1131-3 ifem in 2 RESOURCE databasc may be referenced using a generic address
descriptor { GAD ). A GAD is a sequence of strings and numbers which together form a path from the
top of the database { the RESOURCE ) to the item.

To illustrate the ways GADs can be used consider the RESOURCE ExampleGAD. This contains a
single PROGRAM with a single instance of FUNCTION BLOCK B which itself has 2 instances of
FUNCTION_BLOCK A, names FB1 and FB2. The output from the second block could be referred
to as PROG.FB.FB2.0UT or eise as 2.1.2.3 as PROG is the second RLO of the RESQURCE, FB2
1s the second block in PROG and OQUT is the third child of the block type A,

16 HA024105C106

BENEN: S TR

FTUET



Figure 3 - Example of GADs in a RESOURCE

RESURCE ExampleGAD

| TASK FAST PROGRAM PROG

| BLOCK B FB
BLOCK A - FBI

—% INI
ouT ————

R S )

BLOCK A FB2

— Wi
ouUT

—i INZ

The GAD class is created into another class a SetOfApiGAD which is defined as an open array of
GAD elements ( class ApIGADEI }. The GAD may be formed either by directly using the information
already present in the SetOfApIGAD or else by adding individual GAD clements or else from a value
descriptor { ValDesc_S ).

5.1 GAD Eiement Types

A GAD is composed of a sequence of a number of different GAD elements ( class AplGADEL a
union of alf the element types ) . The GAD element types are -

¢ Numeric - Child number from current block.
s String - Part of a hierarchical name

o Control - For indexing into arrays

s Combined RLO and Instance

The Resource Manager - Impementation Guide 17

CHETREER Y

A



5.1.F Numeric

A numeric GAD element is simply the ( 16 bit ) child number of the parent block, or the RLO number
if it is the first element { i.e. the RESOURCE is the parent ).

5.1.2 String

A string GADY element is a C string hierarchical name in standard form ( e.g. a.b.c.d 3. This is the
one GAD element type that form a complete reference to any data ifem in its own right.

5,1.3 Ceontrol

There are a number of different conirol GAD types defined but only 2 are used, these are :-

e Flat index - Flattened array index. This requires 2 numeric values, one for the index, and the
second for the number of elements referenced.

e Index - Normal array index. This is a singlc numeric.

A control GAD element is always contains more than one value. It is formed with a control GAD
element type followed by a number of numeric { 16 bit ) arguments.

5.1.4 RLO Inst

This is the first element in a fast GAD, although can be uscd as the first element in a full GAD. It
must be the first element. This 16/32 bit GAD element can be in one of 4 flavours :-

Bits 15-14 | 13-10 | 9-0
Usage {0 RLE Instance
Bits i5-14 § 13-7 | 6-0
Usage | 1 RLB ! Instance
Bits | 15-14 13-4 |3-0
Usage |2 RLE | Instance
Bits 31-16 15-14 | 13-0
Usage | Instance | 3 RLB

"This element can be composed and decomposed using the ApllnstGAD class. This has 2 constructors
one for the single 16 bit value and the other for the separate RLB number and instance numbers,

5.2 Fast GADs
A fast GAD is an index into the flattened form of the database and consists of a block reference {

consisting of an RLO number and a flattened index ) followed by the element number and optional
index number ( for ARRAYs).

18 HA024105C100

EREEIaE s



6. Navigation

This section describes the facilities available to navigate the database.

6.1 The Refer Class

The Refer class is the primary means by which access 1o the database is made. Making a reference to

an item in the database is made by construciing a Refer from a set of GADs. Once the construction is

compiete the Refer will effectively point to the database item and all the associated information ., such
as -

e The instance data

& The type template

e The child template

¢ The GAD table entry
= The TASK association

The Refer class is designed to be constructed once and then re-used to obtain several items of
information or the same information again ( i.¢. re-reading instance daia ).

Construction of a Refer is strictly “top down” i.e. there are no methods to migrate to siblings or
ancestors of the current reference. &

6.1.1 Refer Sets

Certain features require operations on or to deal with more than one reference. In order to satisfy these
requirements there is a SetOfRefer class, This class is primarily used in the VarRef class to refer to
local values and also in the message processing of a read template request. In particular i is able to
determine if data reference by a set of Refer is in fact TASK coherent.

6.1.2 Refer Stacks

In order to process read template requests the class ReferStack was developed. This essentially parses
the string in a read template request ( at least one item referenced by the string ). The “stack” is
stacking the “{“ and “}” in the siring,

6.2 The Navigation Class

The navigation class ( ResourceNavigObj ) is effectively a wrapper around the Refer class. The
ResourceNavigObj provides a “higher level” interface to the same functionality including textual
representations. It also includes navigation both “sideways” to siblings and “upwards” to ancestors of
the current context.

7. The Database Loader

The too] that creates the nm-time database from the compiled output { see 3.1) from the 8T compiler /
GCT is known as the “Resource Loader”. This creates the database into an area of “shared memory” (
on some targets the compiled output would not be generally accessible ).

The Resource Manager - Impementation Guide 19



The process of creating the database { as performed by the class RIdObj ) consists of walking the
compiled { C ) structures and then creating the equivalent C++ structures. It then requires all the
additional structures that are not generated by the compiler 1o be added into the database. The actual
sequence of creation is the following :-
e Allocate the shared memory area
s Pointer to the RESOURCE
e Array of RLObj pointers
¢  RLObj, all the RLO contents .-
e« Templates,
+ Instance Data
o GAD Table
s ResourceType
@ Resource Level Wiring
» VAR REFERENCE parser { one per TASK that has YAR REFERENCEs }
¢ Creaie and initialise the VAR REFERENCE (including pointers o arrays of VAR
REFERENCE pointers held in the instantiating blocks instance data }.
e VAR _ACCESS
s  QOT - Optional ( may be created by ihe TASK ) - defanit size is the number of VAR
REFERENCE:s plus number of VAR REFERENCEs to SERVICEs
s PST - Optional ( may be created by the TASK ) - defauit size is {he number of SERVICEs

7.1 Compiled Object to Run-Time Database Linkages

The process of creating the database form the ST compiler / GCT generated compiled object does not
completely de-couple the 2 from each other, There remain some mandaiory linkages and some
optional ones. The mandatory linkages are :-

e The block bodies ( i.e. methods ) are referenced from the run-fime database.

Optional linkages are dependent ( selection of which linkages is a Resource loader option , the default
being the maximum safely permissible on the target - to optimise memory usage) on the target itself
and are restricted ( normally ) by memory protection { particularly on targets such as unix ). These
linkages are ;-

¢ Template names. Where possible the run-time database makes references to the text sirings in the
compiled output rather than generate these strings again. The one exception to this being the
ResourceType which always has its name created anew.

o Templates. Once loaded the compiled template become obsolete unless a reload from the same
objcct is required. The memory space once occupied by the C template can be reused by the C++
class in most instances ( as they are the same size ).

7.2 Tracing the Load

The loader has the facility to trace the creation of objects by name/type and/or memory location. this
facility is only iniended as a loader debug facility which may be compiled out ( by #defining
NO_TEXT ).

7.3 Linking Cross References

When the ST compiler / GCT compiles the RESOURCE it only generates one copy of each type
template and GAD table and forms the linkage through the linker. The loader is unable to do this as it
walks the compiled output but an equivalent mechanism is required to eliminate the duplication of

20 HA024105C100

ST



data structures. In order to achieve this the loader maintains a cross-reference table of all complex
type templates and GAD tables. This cross-reference is created at the “end” of the shared memory
section allocated for the database and grows downwards towards the shared memory that is actually
being used for the database. For virtually every application enough memory is required after this
process in the oading is complete that the 2 never overlap { checking is put in to ensure that the load
aborts should this condition occur ). In the very few ( very small in size, and usefuiness ) applications
where an overlap could occur some additional shared memory would be required for the cross-
references’ .

7.4 The Use of Files

It is possible to creatc a RESOURCE database out of a library *of RLOs with the instantiation of
those RLOs coming from a file in the form of an 3T RESOURCE declaration. All this processing 1s
handled by another loader class { RIdFileOfST ).

8. TASKs

The ferm “task™ can refer to 2 { related ) classes of task, the first is the IEC1131-3 TASK, which is
the normat 'TASK that we refer to ( this is implemenied as the RETaskObj class ), the second is a
base task from which this is derived ( class BaseTaskObj ). This is used for tasks that are required to
support the facility of RMF but are not implemented as IECI131-3 TASKSs ( e.g. the Resource
Debugger ).

Figure 4 - Task Class(es) Hierarchy

IquObj |

RLTaskObj |

Each TASK can locate its RETaskObj from the global pointer MyTaskODbj, and its BaseTaskObj
from the global pointer MyBaseTaskObj

8.1 State Machine

The state machine for a task has 3 components which are :-
%5— ¢ Run Siate
| « Load State
- Data State

There are a nmunber of key transitions that affect the state machine. These are :-

! No such application has yet been created as it would have to be trivial.
? The actual concept of a library is as yet still immature, but it is essential another compiled
RESOQURCE. How libraries arc used 1s very target dependent.

The Resource Manager - Impementation Guide 21

BB R



e Stop - Stop the TASK exccution.

e Start - Restart the TASK execution

e Suspend - Stop the block executions

e Resume - Restart block executions, this will only happen if the TASK is not also stopped

+ Reset - Start the reset process. This resets all instance daia to the cold start values.

» Continue - Continue the reset process staried by Reset. This allows for external sciting of instance
data after Reset.

s Unioad - Unload and terminate the TASK

Al of the above transitions are execiied by the TASK state machine and are TASK coherent, i.e.
ihey only fake effect at the start of 2 TASK execution before any blocks are executed.

Figure 5 - TASK State Machine

le;iniiiaiiseé / Unfoaded i

i

{ Process loaded

Loaded
( Cold Start Methods)
Continue b -~
( Cold Start Methods
——
( Start Methods )
lUn.initialised I
3
Reset

Clear I@

Data

o -,
{ Execute Methodsj

s

-

T Unload

( Exit Methods )

8.1.1 Load State

The load state ( class TaskLoadStateObj ) is the simplest component of the state machine and simply
indicates if the task process is actually running, i.e. it has 2 values Loaded and Unloaded

22 HA024105C100



8.1.2 Run State

The run state ( class TaskExecuteStateQbj ) is the most important state as this defines how the
TASK is ( or will once loaded be ) execnting. This has 3 values :-

o Running - This implies that all the functionality of the TASK is executed.
o Suspended - This implies that the FUNCTION_BLOCKSs of the TASK do not execute but all the
other system functions of the TASK ¢.g. VAR REFERENCEs, RMP still run.

e Stopped - This implies that none of the functionaiity of the TASK is executed, i1 simply waits for a
request to change state, §.e. the state machine engine stll runs.

8.1.3 Data State

The data state { class TaskDataStateObj ) { which is very much a function of the run staie ) has 3
values -

» Uninitialised - This is the state afier the database has been loaded but before any cold starts have
been applied, i.c. bytes of instance data are 0.

« Resel - This is the staie once cold start has completed.
= Modified - This is the state once FUNCTION _BLOCK exccution, or RMP has begun.

8.2 The TASK Block

For each target supported by the Resource Manager a TASK block is required. This implements the
TASK. There may only be one type of TASK in any RESOURCE. A TASK is normally expected to
be a super-set of the IECT131-3 TASK model.

The fixed methods for the TASK are ;-

TASK _cold_start (p)

This is called at cold start time with the argument p being the instance data for the TASK block.

TASK_execute ( p )}

This is called every TASK execution with the argument p being the instance data for the TASK
block. This will normally implement the INTERVAL and SINGLE block inputs.

TASK_exit (}

This is called when the TASK terminates.

8.3 Function Lists

Associated with each TASK are a number of lisis of functions that are io be executed at fixed points.
Each list contains an ordered list of functions ( and singlc arguments to those functions ). The fixed
points at which lists are executed are :-

e Cold Start - after function block cold start

s Start - after function block cold start and before the first execution of the TASK
e Execute - on every TASK execution.

« Exit - on TASK termination and exit.

The Resource Manager - Impementation Guide 23

SR e 1



There is by default a small { 10 } pool of list entries { structure tf]_entry ) allocated to each TASK of
which all but one are available io any “user” but in general it expected that each “user” allocated their
own structure and adds it in to the free list.

Each tf1_entry contains the following -

s Anordering { see 8.3.1)

= An function pointer

e An argument to the functiorn

s A statement of conditionally ( see 8.3.3)

8.3.1 Order

A fusiction ( and argument ) may be placed in a list in order. Each function that is placed in a list is
given an ordering ( a number from -128 to 127 ) where the lowest numbered functions are exccuted
first. In the case of the execute list O represents the point in the execution cycle where the function
blocks associated with that TASK are executed. If more than one function is placed into a list with the
same ordering then the first one entered is executed first.

8.3.2 Uniqueness

When a function is placed into a list ( or removed ) a definition of the “uniqueness” of the entry is
used. There are 3 types of uniqueness -

s A unique combination of function address and argument.

« A unique function address - this implies that the function can only be entered once in the list.
¢ No uniqueness - this implies the entry will always succeed.

8.3.3 Condition
When a function is placed in a list it is also specified whether or not is executed if a specific condition

is true. The condition is “is the TASK running, i.c. not stopped or suspended” in the case of all the
lists.

8.4 Debug

The RLTaskObj also contains classes to implement the RMP debug ( see 12 ) with contained classes
for trace ( class Trace ), break points ( class BreakPointClass ) and Resource Manager class debug (
class ClassDebug ).

9. Resource Messaging Protocol

ol

The Resource Messaging Protocol { RMP, also known as RDP } is a CMS protocol that provides the

followin g'féc‘i‘}mit'ies -

e Remote data access ( e.g. from VAR REFERENCEs, see 11)
e Debugging facilities ( see 12 )

24 HA024105C100

3



s Database structure interrogation

The use of RMP can be provided by instantiating a RmpOhbj class ( this is in fact done in the
RmqObj class, sec 10). The RmpOhj is a simple class that contains encode and decode methods for
all the RMP message types. By changing an encode or decode method to a null method that capability
is effectively disabled. The RmpObj constructor antomatically fills in encode and decode methods for
all RMP message types except the debug types ( command and output ).

Each RMP message is constructed into a CMS buffer of the required size using a message type
specific constructor. Each message structure and message type object is described in the following
seciions,

9.1 Message Objects
This section describes some objects and types that are used by more than one message type.

Time stamps are defined ( structure RmpTimeStamp ) as an IEC1131-3 BATE_AN D TIME (in
seconds ) together with a QTIME { fraction of a second * ).

All data is sent/received as a sequence of data items { an ARRAY is several items ) { n a class
RmpFiatDataObj ).

Sets of fast GADs ( for read template only ) are sent as class RmpFastGadSetOby.

Sets of GADs are ( mostly ) sent as instances of class RmpGADSetObj which is an encapsulation of a
SetOfAplIGAD.

Status is 2 RmpStatus which takes values RmpStatusOk and RmpStatusFailed. In message types
that requires multiple status these are sent in an instance of class RmpStatusSet.

Value descriptors { for read template only ) are sent in sets as class RmpValDescSetObj.
RESOURCE database checksums are sent as RmpResourceChecksam types.

When the facility to forward messages on ( this is instances when a VAR REFERENCE is to another
VAR REFERENCE, ... ) is required each step in the chain of references is contained in a
RmpThruRecord which contains the fast GADs of the VAR REFERENCESs and the RESOURCE
name. These are grouped in a set ( class RmpThruRecordSetObj ).

In order to determine if a message required forwarding a “resolution” of a reference is used. This is
modified at each step of the chain from the VAR REFERENCE to the final source of the data. This
has the following values :-

RmpTemplateUltimate - No forwarding required ( this is the normal case ).
RmpTemplateSingle - The reference is to another VAR REFERENCE.
RmpTemplateMultipleReference - The reference is to data contained in more than one VAR
REFERENCE. (This case is not currently supported }.

» RmpTemplateUltimateAndReference - The reference is to data contained in one or more VAR
REFERENCESs and also to the actual data itself. This case is not currently supported ).

* This is always 0.

The Resource Manager - Impementation Guide 25

CETRRTT



Whenever the possibility of forwarding may occur if is possible that any message notf be able (
temporarily ) be able to complete and therefore such message carry an RmpOperationStaius io
indicate if a probiem has occurred. This takes one of the following values :-

¢ RmpQperationOk - No problem encountered

¢ RmpOperationNotCoherent - one of the VAR REFERENCEs in the chain may currently not be
resolved and the message will { possibly temporarily ) fail .

e« RmpOperationCyclic - the VAR REFERENCEs may wrap back on themselves

9.2 Message Types
All messages have a common header which comprises 3 components -

s RmpRegld - Reguest Id to uniquely identify the message. This is supplied in the constructor to alf
requests and should be returned in all responses.

« RmpMsgType - The type number of the message

e« RmpMsgVersion - The version number of the message. All messages are generated with the
RmpCurrentVersion { 0 ). This is lo allow modification of the RIVIP and to provide backwards
compatibility if’ the need arises.

9.2.1 Read Template

The read template message is designed for use by VAR REFERENCESs. Tt returns descriptions of
remote objects ( as ValDesc_S, value descriptors ). This provides sufficient information for tempiate
matching and provides a fast GAD for future use.

The read template request ( class RmpRead TempiRequestObj ) can be constructed in of 2 ways :-

+ From a character string, for normal template requests.
¢ From another template request when a icmplate request is forward o the proxy TASK on another
processor within the RESOURCE for processing,

The request itself just contains a single C string describing the template to be read.

The read template response { class RmpRead' TemplResponseObj ) is generated by the proxy task
and contains the following :-

» A checksum used for validation of future requests and responses.

» The task id of the TASK that owns all the items in the terplate request, this is O if the data is not
all owned by a single TASK, this impiics that the data is not coherent.

o The address to which future requests for this data should be addressed. This will be the owning
TASK if coherence can be maintained or ( normally ) the proxy if not.

e A status indicating if all the information in the templaie could be located or not.

s Vaiue descriptors { SetOfValDescs ) for all itfems in the template.

9.2.2 Simple Read
The simple read message is designed for reading a single data item ( including an ARRAY ).
The read request { class RmpSimpleReadRequestOhj } may be constructed in one of 2 ways -

o From a single character string ( which converts to a string GAD ).
e From the fast GAD contained in a value descriptor.

26 HA024105C100

EREIC S B



The read request simple contains a set of GADs ( as a SetOfAplGAD ).
The read response { class RmpSimpleReadResponseObj ) contains the following :-

e A checksum, which should match that returned in the initial read template response.
s A iime stamp.

e The data { as 2 RmpFlatDataObj ).

s A status indicating if the operation was successful

9.2.3 Simple Write
The simple write message is designed for writing a single data item ( including an ARRAY ).
The write request ( class RmpSimpleWriteRequestGbj ) mav be constructed in one of 2 ways -

e From a single character string { which converts to a string GAD ).
e From the fast GAD coptained in a value descriptor.

The write request simple contains ;-

o A setof GADs ( as a SetOfApIiGAD ).
¢ The data ( as 3 RmpFlatDataObj ).
e A checksum, which should match that returned in the initial read template response

The write response { class RmpSimpleWriteResponseObj ) contains the following .-

e A status indicating if the operation was successliul
s A time stamp.

9.2.4 WriteRead

The write then read messages is designed for complex operations that require reading and/or writing
of a number of data items. It also incorporates some additional information not provided in the simple
messages and so may be used for single items as well.

The write read request { class RmpWriteReadRequestQbj j contains :-

# A checksum, which should match that returned in the initial read template response
» A RmpThruRecordSet for forwarding.
» A read set { class RmpFastReadRegObj ) which contains :-
s A scl of GADs ( as a RmpGADSetObj ).
» A write set { class RmpFastWriteReqObj ) which contains :-
o A set of GADs ( as a RmpGADSetObj ).
s A sct of data ( as a RmpFlatDataObj )
o A time stamp ( for use in forwarding reads ).
o The “resolution” ( RmpTempiResolution ) of the reference

The Resource Manager - Impementation Guide 27

CIHTEEITT



Figure 6 - RMP Write Read Request Class Hicrarchy

[RmpGADSezObj[ |RmpFIa€Dat’aObj ] RmpFlatDataObj

L

iRmpFastWriieRaquas{Obj l IRmpFaiseadchucs’tObj[ IR.mp’]'hmRecordSelOb} g RaupMsg{ihj

!
i

1RmpWriteReaciReqm—:s:t()bj !

The write read response { class RmpWriteReadResponseOQbj ) containg -

e A fime stamp
e A read set ( class RmpFastReadReqObj ) which contains -

e A set of data { as a RmpFlatData(bj)

e A set of status ( one for each GAD ) ( as a RmpStatusSetObj )
e A write set { class RmpFastWriteReqObj ) which contains :-

e A sei of status ( one for cach GAD ) { as a RmpStatusSetObj )

Figure 7 - RMP Write Read Response Class Hierarchy

RmpStatusSetObi ! lRmpsmtussctOb;

RmpReadResObj

RmpWriteResObj

- .
RmpWriieReadResponseObj

RmpFlatDataObj

RmpMsgOb;j

9.2.5 Service

The service message is designed for requesting a SERVICE from a SERVICE provider.

The service request { class RmpServiceRequestObj ) contains :-

s The checksum returned from a previous read template request.
e The “resolution” { RmpTemplResolition ) of the SERVICE.,

28

HA024105C100

U R



e A RmpThruRecordSet for forwarding.

e An set of GADs for ofl INPUTs of the SERVICE.

e A sct of data { RmpFiatDataObj ) for the INPUTs,

e The GAD { RmpServiceGAD ) of the SERVICE.

e The GAD ( RmpServiceGAD ) of the parent of the SERVICE ( this is needed w0 locate the
instance data ).

e The number of OUTPUTSs, the number of data items for all QUTPUTs and the maximum
STRING size of all OUTPUTS ( {o size the response }.

The service response { class RmpServiceResponsedbj ) contains -

e The checksum
e The gperation status { RmpQGperationSiatus .
e The siatus of the SERVICE ( RmpServiceStatus ). Which is one of -
e RmpServiceOk - SERVICE compleied
¢« RmpServicePending - SERVECE requested accepted ( rendezvous )
o RmpServiceRejected - SERVICE request already queued ( rendezvous )
¢ RmpServiceError - SERVICE request invalid.
s The data for the OUTPUTs { RmpFlatDataObj

9.2.6 Service User
The service user message is designed to “keep alive” a SERVICE request that has been queued.
The service user request { class RmpServiceUserRequestObj ) contains -

e The checksum returned from a previous read template request.

» The “resotution” { RmpTempiResolution ) of the SERVICE.

e A RmpThruRecordSet for forwarding.

¢ The GAD ( RmpServiceGAD ) of the SERVICE.

o The GAD ( RmpServiceGAD ) of the parent of the SERVICE ( this is needed to locate the
instance data ).

The service user response ( class RmpServiceUserResponseQhbj ) contains ;-
¢« The checksum
¢ The operation status ( RmpQOperationStatus ).

e The CMS address of the current user of the service ( if there is one ).
¢ The request id { RmpReqld ) of the user.

9.2.7 Read Description

The read description message is designed to provide “full” database information about a number of
items. This provides more information than thai provided by a read template message.

The read description tequest { class RmpReadDescriptionRequestObj ) is constructed from a set of
GADs { class RmpGADSetObj }.

The read description response ( class RmpReadDescriptionResponseObj ) contains a sct of
descriptions ( RmpDescription, set RmpDescriptionSet ). Each description contains :-

» A value descriptor { ValDesc_S ).
s The instance name ( truncated to a maximum of 12 characters ).

The Resource Manager - Impementation Guide 29

VEWRRETL

R



e The type name ( truncated to a maximum of 12 characters }, for complex types only.
s The number of children { always 0 for simple fypes ).

9.2.8 Debug Command

The debug command message is an “unconfirmed request” type for issuing debug messages ( form the
Resource debugger ) o a RESOURCE as part of debug session.

The debug command message ( structure RemDbgCmndRequest ) simply contains a union of all
debug command and their arguments ( structure dbg_cmnd ). The union consists of 2 types of
structures, those that are RMP debug commands and those that are internal debugger commands.
The foliowing table identifies the commands and which type they are -

Command Type
List RMP and Internal
Continue RMP
Help Internal
Quit Internai
Trace RMFP
Break RMP
Delete RMP
Print RMP
Define Internal
Set RMP
Whatls Internal
[Transcribe Internal
RedirectIn/Oul | Internal
AppendOut Internal
Ping RMP
Undefine Internal
Connect RMP
Disconnect RMP
Ref Internal
Unref Internal
Read Internal
Write Internal
Service Internal
Store Internal
Exercise Internal
Pause Internal
Wait Internal
Step RMP
Disp RMP
Next RMP
Scan Internal
Router Internal
No Internal
DeleteTrace RMP
DeleteBreak Internal
Expand Internal

30 HA024105C100

CTHTREENT T



9.2.9 Debug Output

The command output message is an “unconfinmed request” type for reporting results of debug
commands that have previously been issued. A single debug command may result is any number of
command oulpul messages at any time.

The debug output message ( class RemDbgOutputObj ) contains the following -

» A count of the number of previous debug messages lost { since the Iast successtul debug owpis
message sent ). This is given as the embedded debug may lose messages { due to a lack of CMS
buffers )} when substantial oulput is required { e.g. during trace ).

s A debug message number, this is an index into a format string on the debugger to format the
outpuL.

e A set of data, the arguments fo the format siring above. This data is a sef of DINT, LREAL and
STRING only.

10. Resource Message Queue

Each TASK ( supporiing RMP ) has a message queue for RMP messages. The queue exists in order
to de-queue messages from CMS so that they can be processed at the correct point in the TASK
execution cycle.

The message quene is implemented by a message queue object ( class RmgObj ) with a ( load time )
fixed number of queue eniries ( class RmgMsgQueueEntry ). The queue entries are split between 3
queues -

s The free quene { class RmgFreeMsgQuene ) which holds all currently unused queue entries,

# The incoming queue { class RmqincomingMsgQuene } which hold all as yet unprocessed quene
entries.

s The deferred queue ( class RmgDeferredMsgQueune ) which holds messages which have had their
processing deferred until a later time.

Messages are normally processed in-between each RLB execution and at the start of the execution of
all RLBs. When a break point has been set using the debug features of the RMP protocol then only
debug messages will be processed until the break point is cleared and the normal messages processing

Figure 8 - Resource Message Queue Entry Class Hierarchy

‘dl ink i
y
RmgMsgQueueEntry

conditions prevail.

[E-AHA TR

R

The Resource Manager - Iimpementation Guide 31



Figure 9 - Resource Message Queue Class Hierarchy

[dlin.k I

lstaticfdlist ! lélistﬁitcra{or E
RmgMsgQueue
ngqFrceMngucuc E IqulncmﬁinnggQucuci !quDeferréHMngueue E ER_mpObj {

L
ER.quhj

The RmqObj contains “action function pomters” for all RMP message types. These action poiniers
may be sclectively filled according the RmqObj instantiators intended use of RMP. If no action
function is provided the for a message type then all messages of that type will be discarded without
processing.

11. Var References

The Resource Manager provides access (o the database from an IEC1131-3 extension called a VAR
REFERENCE.

Figure 10 - Var Reference Class Hierarchy
RudiVarRef |

BaseVarRef 2

T EREEEEERE] e - ,‘) ............. »
BaseSimpleVarRef :DynamicExtObj IBaseCom;JlexVarRef |

4
SimpleVarRef |DynmxzicSimpleVachf ; DynamicVarRef }

32 HA024105C100



Figure 11 - Var Reference Service Classes

RudiVarRef

/x

|EﬂseS;rviceVarIg_! I SCWZCCP&E’C};{V&[TR&}

ServiceVarRef | ThynamicService VarRef |
: i H ]

11.1 Outstanding Operation Table

The outstanding operation (able { class Qot } is used is refain an entry ( class OotEniry ) for
outstanding operation on a Var Refcrence. An entry is removed from a free list { class QotFreeList )
and placed on the outstanding list { class QotOuthist ), (he size of the OOT ie. the number of entries
available is fixed at load time. The eniry is created on a request and remains in the table until either
the response is received or else it is timed out. The one exception to this is for SERVICE requests
which are not explicitly timed ouf as they may take an indefinite period of time to complete ( in fact
may never complete - for rendezvous the rendezvous may never be met} but may be removed on a
SERVICE user request time-out.

The OOT has built in time-outs for 3 classes of Var Reference operation :-
¢ Read Template and Service User ( default 60 seconds )

+ Read ( defanlt 5 seconds )
«  Write ( default 5 seconds )

Figure 12 - OOT Ciass Hierarchy

istatic_dlist I fstatic_dlist i

OotFreeList |

The Resource Manager - Impementation Guide 33

TITBEEITT

R



The OOT is potied regularly by the TASK 1o which it is attached and if an eniry times out then a
time-out function is called, this is either the Timeont virtual method on the Var Reference class or
cise a bespoke time-out function { only used by the Resource Debugger ) that was specified at time of
cntry into the QOT.

11.2 Pending Service Table

The pending SERVICE table ( class Pst ) comprises a nuber of entries { class PstEntry ) in one of
2 lists ( class PsTable ). These lists are the free list and the ontstanding list.

For each SERVICE that is “outstanding”, i.e. started { as a rendezvons ) or else under execution (
remotely ) an entry is required in the PST. Each PstEntry contains the following -

e The request id { RmpReqld } of the requesier.

& The CMS address of the requester.

e The amount of data QUTPUT expecied { this is expressed as the number of GADs, number of data
items, and string size of all items ) - this is required fo size the response message.

e The GAD of the SERVICE itsclf,

Entries in the PST arc identified by an ID which is a mask of offset into the array of PstEntry and the
instance of that entry. The mask being dynamically sized according to the size of the PST to gain the
maximum unigqueness of the 1D, The user of the SERVICE also plants a user key Pstiey to assist in
identifying their own PST entry ( this is the ChildTemplate pointer for remote access ), this value is
held in the pending hidden DINT of the SERVICE and should not be < 0 for remote access.

12. Embedded Debug

The embedded debug facilities are available using RMP from the resource debugger * These are all
implemented using 2 RMP messages { the command set request the facility, and output to generate the
resnlt(s) - zero or more outputs may result from a single command },

All features of the embedded debug are available over RMP as services of a single RMP message type
( the debug command ).

12.1 Debug Output

Debug output ( the RMP debug output message ) type is effected by doing “printf” from a debug object
{ class Dbgl( ). Each TASK has a “super” debug class { class SDbglO ) derived from PbglO which
is attached to the RLTaskObj and located by the global pointer DebugEQ ( there is also a “global”
SDebuglQ which is in fact the same as DebuglO.

The SDbglO class only permits a debug “session” with a single remote debugger.

12.2 Debug Session

i order to use the debug services with a TASK a debug “session” must be established, this requires
the connect service to be issued. This will only be accepted ( by the TASK ) if no other debug session
is currently in progress. The debug session is ended by terminating with a disconnect service. The
disconnect {erminates the session even it is issued by someone other than that conducting the debug
session.

1t is hoped that GCT will also provide some of these facilities in the future.

34 HA024105C100

STEmENT O



12.3 Ping
This is a simple service which echoes back the TASK to which the debugger is connected.

This is the only service that does not require a debug session.

12.4 Trace and Break

This section describes those objects to which trace and break can be applied.

12.4.1 Resource Manager Class Debug

The facility to debug the primary Resource Manager classes ( by setting break and trace points ) is
provided. The following classes are debuggable in this manner -

e Refer { class Refer }

o Var Reference ( class RudiVarRef )

s  GAD { class GAT}

» Template ( class Template }

e (GAD Table ( class GADTableEntry }
& RLO (class RLObj)

Each of the above classes is dertved from a base debug class { idebug ).
Tt should be noted that not ail methods of the above classes are debuggable ( i.e. break/trace points can
not necessarily be set on entry/exit to these methods - this is so that maximum use of in-line methods

can be made. )

it is not intended that any product will have this feature enabled in shippable code due to the run-time
over-head.

12.4.2 RMP Messages

It is also possible to trace or break on an RMP debug message type being recetved ( this is
implemented in the Resource message queue { RmgObj ). This facility should be used with caufion.

It is not intended that any product will have this feature cnabled in shippable code due to the run-time
over-head.

12.4.3 Source Code Debug

It is possible to trace or break FUNCTION_BLOCKS ( and PROGRAM:s ) at entry, exil or specified
line numbers. Blocks that are to be debugged must have the -DEBUG switch applied to the 5T
compiler which then plants calls for each trace/breakable point in the block. Blocks with debug on
will run slower than without ( i.e. debug is intrusive ).

12.5 Resource Database Interrogation

Database interrogation ( and modification ) can be effected using the set and print services of the
debug command message type. These are however very crude and reduce all itemns to one of 3 types :-

The Resource Manager - Impementation Guide 35

TIETREINT



e DINT
« STRING
» LRFEAL

The set service is completely unprotected and over-rides the normal proteciion features of the
database.

This feature is only intended as debug facility for system programmers and not for customer use.

13. ST Compiler Interfaces

This section lists all calls planted by the ST compiler inio the Resource manager code,

13.1 Var References
The bulk of the ST compiler plants are for VAR REFERENCEs.

It all cases these function begin with the same 2 arguments which identify a potnter to the VAR
REFERENCE class. These are ;- Refp, pointer to the head of the instance data which contains a
pointer to an array of VAR REFERENCE pointers for the block, offset the offset into this array for
the VAR REFERENCE to which it applies. A full listing of all functions is given below, where the
ellipsis ... refers to the implicit arguments Refp and offset.

void refYREFMETHOD(..., CDL_string™ ref )
CDL_string* getRefVREFMETHOD(...)

void scanVREFMETHODY(..., CDL_dint scanrate)
CDL_time getScanVREFMETHOD(...)

int statusVREFMETHOD(...)

int readStatusVREFMETHOD(...)

int writeStatusVREFMETHOD(...)

int servStatusVREFMETHOD(...)

int writeVREFMETHOD(...)

void setDontWrite VREFMETHOD(..., bool dontwrite)
CDL._bool getDontWriteVREFMETHOD(...)

int serviceVREFMETHOQD(..., char* name)

void setPropertyProtectVREFMETHOD(..., bool Protect)
CDL_bool getPropertyProtectVREFMETHOD(...)
CDL_bool* getWriteMarkersVREFMETHOD(...)

int getResolutionVREFMETHOD(...)
CDL_date_and_time getTimeStampVREFMETHOD(...)
CDL_gtime getQTimeStampVREFMETHOD(...)

13.2 Source Code Debug

In order to provide source code debug the ST compiler plants calls to the embedded debug software
with the function -

TraceFbiock ( char* InstanceData, int lineNumber, int entry, char* fname ) ;

where :-

36 HA024105C100

TOIETERENY



instanceData - Pointer to the instance data for the block
lineNumber - Current line number
entry - one of :-
» 0 -block entry
s I -block exit
e 2 - line number
fname - FUNCTION BLOCK name

L2

&

-]

13.3 SERVICEs
A single call is planted by the ST compiler when a SERVICE completes.
SERVICECOMPLETE ( int OstEntry )

The OstEntry is in fact the vaiue of the pending OUTPUT ( see 11.2) of the SERVICE.

14. The Source Code

14.7 Where to Find It

The following table identifics what is defined in whai source module

Source File(s) Classes, Types and Globals

apl gads.{ch]xx | ApIGADEL SetOfApIGAD, GAD, ApllnstGAD

cil cxx.oxx ST Compiler Interfaces Jor SERVICECOMPLETE and TraceFblock
cif_rsrc.h

cif_rdb.h, .cxx Various { Resource database interfaces for function blocks

cif tfl.h, .oxx C Interfaces to TASK function lists

cif vrefh, .cxx ST Compiler VAR REFERENCE Inferfaces

dbe cmnd.h dbg _cmnd

dbe ehed cxx Implementation of debug commands

dbe io.[ch]xx DegbuglO, SDebuglC, SDbglO

dbe outp.cxx

dbe_rem [ch]xx RemDbgCmndRequesi, RemDbgOutputRequesi, RemDbgOutputObj

dbe ugil.jch]xx

def defs h VarMode, VarShape, VarType

def diom.h Format strings for debug output

def thip.h CDL_Any P, CDL_Any S, CDL_struct 8, CDL struct_16, CDL struct 32
def _idbg. hxx idebug, DbglO

def vals.h FastGad S, ValDesc S, Value P, Value S

mai_load.cxx The Resource loader main

mai task.cxx The Resource { IEC) task main

mai_ldtk.cxx A combined main for the loader and the task

rdb acc [ch]xx RdbAccessNode, RdbBaseAccessPath, RdbSetOfAccessNode

rdb bnds.[ch]xx | Bounds, Dimension

rdb btsk.[ch]xx | BaseTaskObj, MyBascTaskObj

rdb_cver.hxx This defines the current version number of the Resource Manager

rdb_gadt.[ch]xx | GADTableEntry

rdb navi.|ch|xx | ResourceNavigObj

The Resource Manager - Impementation Guide

37



rdb rlo.{ch]xx

RLObj, RLBOb]

rdb rsrc.fchixx

ResourceType base, ResourceType

rdb_task [chlxx

BreakPointClass, ClassDebug, MyBaseTaskObj, RLTaskObj, TaskDataStateObj,
TaskExecuteStateObj, Taskl.oadStateObj, Trace

rdb_tmpl. [chixx

ChildTemplate, ComplexBase, ComplexChild, ComplexChildWithBounds,
ComplexType, SimpleChild, SimpleChildWithBounds, SimpicType,
SimpleTypeWithBounds, Template, TypeTemplate

ridb wvacc. [chixx

RdbAccessPath, RdbSetOf AccessPath

rdb who fchjxx

Functions for database location by instance data poinier

rem pst.fchixx

Pst, PsiEntry, PstKey, PeTable

rem rdsc.exx

Action function jor RMP read description requests

rem read.cxx

Action function for RMP simple read requests

eI SCIv.CXX

Action functions for RMP server and service user requesis

rem tmpl.cxx

Action function for read femplate request

TCH WIL.CXX

Action function jor write read requests

rem wril.cxx

Action function for simple write requests

ref ref [ch]xx, Refer

ref writ.cxx

ref sct.ch]xx SetOfRefer
ref stck.[chixx

ref str.ichjxx

rid atch.fchixx TheResource
rid fost.[ch]xx RidFileOfST
rid ldsh.jchixx RidObj

rmp cms. hxx

rmp cod.|ch]xx

Encode and decode of RMFP messages,

rmp_defs hxx

RmpMsgType, RmpMsgVersion, RmpOperationStatus, RmpRegld,
RmpResourceChecksum, RmpServiceStatus, RmpStatus, RmpTemplRescluiion,

rmp_obj.Jch]xx

RmpFastGadSetObj, RmpFlatDataObj, RmpGADSetObj, RmpStatusSetObj,
RinpTimeStamp, RmpThruRecordSetObj, RmpValDescSetObj

rmp_rmp.Jch]xx

RmpObj

rmp_rdsc.jch]xx

RmpDescription, RmpDescriptionSet, RmpReadDescriptionRequestObj,
RmpReadBDescriptionResponseObj

rmp read.[chixx

RmpSimpleReadRequestObj, RimpSunpieReadResponseObj

rimp_serv. fch]xx

RmpServiceGAD, RmpServiceRequestObj, RimpServiceResponseObj,
RmpServiceUserRequestObj, RmpServiceResponseObj

rmp_size.[ch]xx

Iunctions for determining the size of RMP messages

rmp_tmpl. fchixx

RmpReadTemplRequestOb), RmpRead TempiResponseObj

rmp ver.Jchlxx

RmpCurrentVersion

rmtp wr. [chjxx

RinpWriteReadRequestObj, RmpWriteReadResponseQbj

rmp writ. [ch]xx

RmpSimpleWriteRequestObj, RmpSimpleWriteResponseObj

rmq_msgg.jchlxx

RmgDeferredMsgQueue, RmgFreeMsgQueue, RmgincomingMsgQueue, RmqObj

rut_dink [chjxx

static dlist, dlink, dlist iterator

i 1 {ch]

tl entry

rut time.fch]

rut vals. {chjxx

rut vdsc. fchixx

SetQOf, SetOfVals, SetOfValDescs, SetOfValslterator

si0 10.hxx

vrf_base [ch]xx

BageComplexVarRef, BaseService VarRefl, BaseSimpleVarRel, BaseVarRef,
RudiVarRef, ServiceParentVarRef

vrf diagh

vif diag hxx

vl _dyn..fch]xx

DynamicExtObj, DynamicSimpleVarRef, DynamicServiceVarRel, DynamicVarRef

vif new.cxx

vif oot.[ch]xx

Oot, OotEntry, OotFreeList, OotOutlist

38

HA024105C100

TIHWTETT

e



vif pars.fchjxx

vif rem.cxx Action functions for RMP responses for Var Reference generated requests
vl vref [chlxx SimpleVarRef, ServiceVarRef, VarRel

vi vibl.cxx This contains headers to generate a single virtual function fable some fargels

14.2 Order of compilation
The order of compilation of the Resource manager modules must be -

I oyut

2. sio

3. apl

4. rp

3. mmg

6. rdb ( rdb, ref, rem, vif )’
7. rmi

8. dbe

9. ras

10. rid

11 cif

12. vt

13. mains ( loader, task }

The above ordering assumes that all modules and features of the Resource Manager are to be used.

14.3 Pre-processor

This section identifies those C/C-++ pre-processor symbols that affect compilation of the Resource
Manager.

14.3.1 Target

This section identifies those symbols that are dependent on the Resource Manager target.

Symbol Relevant Targets | Description

SHARELIB | unix Is the Resource Manager to be built as a shared library
FloallEEE all Are floating point numbers in IEEE formal

Nativelsni | all Is byte ordering the same as the universal format ( Motorola )

14.3.2 Options

This section identifies those symbols that enable or disable features of the Resource Manager.

Synbol Description

ATTRIBUTE Enables draft attribute implementation. This currently
achieves nothing useful.

debug mode Defines whai debug facilities are available

* There are cyclic dependencies between these modules and so must be complied as a set with all their

header previously exported
® Separately compiled virtual function tables are only required for some targets.

The Resource Manager - Impementation Guide

39



NO _TEXT

Loader trace facilities disabled

TargetSupport_CDL_LREAL

Defines if IEC1131-3 LREALS are supporied. No current
targets support LREALS, although it is required for GCT
build.

TargetSupport_DynamicVarRel

Are dynamic var references supporied.

TargetSupport SERVICE

Are SERVICEs supporied

TargetSupport VAR ACCESS

is VAR ACCESS supported

TargetSupport VAR REFERENCE

Are VAR REFERENCESs supported

40

HA024105C100

bR

THEER



15. Glossary of Terms

/CMS - Communications Messaging Services

GAD - Generic Address Descriptor

. 00T - Outstanding Operation Table

| PST - Pending Service Table

. RLB - Resource Levei Block

¢ RLO - Resource Level Objeci

RMP - Resource Messaging Protocol

| SERVICE - A Burotherm extension to the IEC1131-3 standard to provide remote procedure calls.
ST - Structured Text, used to refer 1o the output of the compiler n nay of the IEC languages

%YAR REFERENCE - A Eurotherm ex{ension io the THC1131-3 standard io provide access o remote

data.

The Resource Manager - Impementation Guide

41

TTEWR DT N



Index

A

ACCEPT, 14
ApIGADE], 17
ApiingtGAD, 18

B

BaseTaskOb;, 21
Bounds, 11, 37
break, 30, 35
BreakPomiClass, 24

O

Oot, 33

Ootlntry, 33

CotlreeList, 33

OotQuiList, 33

Cutstanding Operation Table, 41

'

CDIL_Any_P, 14, 15
CDL_Any_S, 14, 15
CDL_struct 32, i3
checksum, 12
ChildTemplate, 10, 34
CiassDebug, 24

CMS, 24, 25,29, 31, 34, 41

P

PROGRAM, 16
PET, 9, 34, 41
PsTable, 34
PstEntry, 34
Pstkey, 34

D

dbg omnd, 30

Dbgl(, 34

debug, 24, 30, 31, 34, 35,36
debugging, 24, 30, 31, 34, 35, 36
DebuglO, 34

Dimension, 11, 37

élink, 16

dlist_iterator, 16

F

FastGad_8S, 15
FIUUNCTION _BLOCK, 9, 10, 12, 16, 23, 35,37

G

GAD, 8,9, 12,13,15,16, 17, 18, 19, 20, 26, 27,
28,29, 34, 35,37, 4%

GADTableEntry, 13, 35

GCT, 9,13, 19,20, 34, 40

i

idebug, 35

R

RdbAccessNode, 12

RdbaAccessPath, 12

RdbBaseAccessPath, 12

RdbSetOfAccessPath, 12

Refer, 12, 19, 35, 38

ReferStack, 19

RemDbgCmndRequest, 30

RemDbgOutputOhj, 31

Rendezvous, 14

ResNavigObs, 19

RESOURCE, 9, 10, 12, 16, 17, 18, 20, 21, 23, 25,
26, 30

Resource Level Biocks, 12, 18, 31,41

Resource Level Objects, 9, 12, 13, 15, 16, 17, 18,
41

ResourceNavigObj, 19

RETAIN, 14

RLE, 12, 41

RldOby, 20

RLG, 12,41

RLTaskObj, 21, 24, 34

RMP, 12, 14, 16,21, 23, 24, 25, 26, 28, 30, 31, 32,
34, 35,38, 3%, 41

RmpCurrentVersion, 26

RmpDescriptionSet, 29

RmpFlatDataObj, 25, 27, 28, 29

RmpGADSet, 25

RmpGADSetObj, 25, 27, 29

RmpMsgType, 26

RmpMsgVersion, 26

RmpOby, 25

RmpOperationStatus, 26, 29

RmpReadDescriptionRequestObj, 29

RmpReadDescriptionResponseObj, 29

RmpReadTemplRequestObj, 26

RmpReadTempiResponseOby, 26

RmpReqld, 26, 29, 34

RmpResourceChecksum, 25

42

HA024105C100

TTERREINT Y



RimpServiceGAD, 29 STRING, 15,29, 31, 30
RmpServiceRequestObs, 28 STRINGs, 15, 29, 31, 36
RmpServiceResponseObj, 29
RmpServiceStatus, 29

RmpServiceUserRequestOby, 29 T

RmpServiceUserResponseObj, 2%

RmpSimpleR eadRequestObj, 26 TASK, 12, 19,20, 21,22, 23, 24,26, 31, 34, 35,
RmpSimpieReadResponseObi, 27 17

RmpSimpleWriteRequestObj, 27 TaskDataStateObi, 23
RinpSimpleWriteResponseOby, 27 TaskBxecuteStateObj, 23

RmpStatus, 25 Taskd_oadStateObj, 22

RmpStaiusSelOby, 28 Template, 6, 11, 20, 33, 35
RmpTempliResolution, 27, 2§, 29 tl eniry, 24

RmpThruRecordSetObi, 25 irace, 24; 30, 35, 38

RmpTimeStamp, 25
RmpWriteReadRequestOby, 27
RmpWriteReadResponseOby, 28
RmgDeferredMsgQuene, 31 I
RingFreeMsgQueue, 31
RmgncomingMsgQueue, 31
RmgMsgQueneEntry, 3!
RmqOly, 25, 31,32, 35
RudiVarRef, 33

TypeTemplate, 10

unix, 20, 39

V

AY valDese_8, 15, 17, 29 ;
Value P, 15, 16 =
Value S, 13

SDbgiO, 34

SDebuglO, 34
SERVICE, 14, 28, 29, 34, 37, 40, 41
SetOf, 16
SetOfAplGAD, 17,27
SetOfRefer, 19
SetOfValDescs, 16, 26
SetQfVals, 16
SetOfValsiterator, 16
SFC, 13

ST compiler, 13, 36, 37
static_dlist, 16

VAR REFERENCE, 9, 13, 14, 20, 23, 24, 25, 26,
32,36, 37, 40, 41

VAR _ACCESS, 9, 11, 12, 20, 40

VAR EXTERNAL, 14

VAR _GLOBAL, 12, 14

VarMode, 14

VarRef, 19

VarShape, 15

VarType, 14, 15

The Resource Manager - Impementation Guide 43



