EUROTHERM

THE RESOURCE MANAGER

A Guide to the Resource

User Guide

Debugger

© COPYRIGHT MCMXCIV EUROTHERM LIMITED

All rights strictly reserved. No pari of this document may be
stored in a retrieval system, or transmitted, in any form or by
any means without prior written permission from Eurotherm
Led

HA024105C002 2 s

CONTENTS

Coutents
1 Scope 4
2 Related Documents 4
3 Loading 4
4 Connections 4
4.7 Addressing 4
4.2 ConmectinE e e 5
4.3 Ping 5
4.4 QMEEINE Lo e §
5 Internal 6
1 Help - 8§
B2 MACIOS . . o o o o e e 6
B3 Drelays . . oo e e 7
6 References 7
6.1 Setting a Reference 7
6.2 The Data e e e e e e #
8.3 EXEICISIILE -« « « « « « o e e e e e 12
G4 Walling e 12
7 Inspecting Data 13
71 O WHhat I8 . . e e e e e e e e i3
8 ST 14
B.1 TTrace e e e e e e e e e 15
89 Break . . . e i6
9 Redirection 18
0.0 TranscriptiOn o o e e e e e 19
G2 BeriPis .« . . o e e e 19
10 Routers 19
11 Debugger Invoke Options 21
12 Debugger Command Summary 22

HA024105C002 2

it

cre

CONTENTS

VERSION HISTORY

Version Date Changes
i March 10, 1994 Initial issue
2 | Decernber 20, 1994 | Update for Version 2.2

HA024105C002 2

A GuUIDE TO THE RESCURCE DEBUGGER 3

RES 11

EE

CIONNDOTIGNS

1 Scope

This document describes the Resource debugger { Version 2.2). The debugger is used o conduct a debug
session with another TASK { possibly on another RESOURCE). A debug session may be conducted by an ST
programumer to examine and modify the TASK data as weil tracing or breaking the execution of the ST ab
desived points. All commands required to conduct a debug session with another TASK are described in detail,

2 Related Documents

[1] HAG241080C001 A Guide to Var Heferences
[2] HAD241050003 & Guide to Tuning the Resource

[3] HAO24105C005 A Guide to Setting Up OMS Networks

I
&

3 Loading

A debug session is begun by inveking the resource debugger resdebug.

By defauit the debugger is loaded as the CMS process “ResourceDebugger”. If another resource debugger
session is current on the same CMS node then another process name must be used (§11 }.

Once loaded a debug session may be begun. A debug session may either be conducted interactively by typing
commands or from a script file. In either case the maximum length of any command is 512 characters.

When the debugger 1s quit the TASK is unioaded.

4 Connections

A debug session may be conducted with any TASK whose RESOURCE supports debugging. A debug session
inay be conducted with any such TASK on the RESOURCE network. Each TASK may only be connected to one

debugger.

In order to conduct a debug session with another TASK it is first necessary to connect to that TASK. The
debugger may be connected to any number of TASKs at any given time. The debugger maintains a list of all
TASKs to which connecticns have been issued. It is not necessary te be connected to a TASK in order to set up
dynamic VAR REFERENCEs to it §6.

4.1 Addressing

A T43K 1s addressed by using its Application Entity Name which 1s of the form <Resource>:<TaskName>.

4 HA024105C002 2

CONNECTIONS

4.2 Connecting

P
connect |

In order to connect to a TASKE the conneci command should be tssued. Once the connect has been issued ithe
TASK name is added to the hist of connected TASKs.

This TASK will now send ALL of its debug messages to this debugger until disconnected. It should be nated
that all connected TASKs will send their messages to the debugger and it is up to the user to distinguish from

which TASK they originated. It is therefore advisable 1o keep the number of connections fo a minimum.

A connected TASK may run cué of bulfers to resly in full to & comumand, this may occur because there are too
many ackive cormmands (especially trace } to the TASK or it has insuflicient buffers for the operation, Buch an
event will be reported in the next message from that TASK in the form

#x%% 7 debug messages lost due to lack of buffers #¥tk

This may be rectified by retuning the RESOURCE for the debug session { see [2]).

The address of this TASK will now form the debugger prompt and is known as the curreni TASK. This TASK will
remain the current TASK until it 1s either disconnected or the debugger s connected to another TASK. It may

happen during a series of messages from a TASK that the prompi “interrupts” the messages, this is perfectly
normal.

list connect

The list connect command may he used to list all connected TASKs.

disconnect

A disconnect may be issued to any connected TASK. If no address is specified in the disconnect comiand then
the current TASK is disconnected. When a TASK is disconnected then it is removed from the list of connected
TASKs. If the list of connected TASKs is not empty ¢hen the TASK last connected to becomes the current TASK.

When the disconnection command is received by the TASK all current frace { §8.1) and break (§8.2) are
deleted.

Example

KotConnected/Debug: connect "regress2:taskl”
regress2:taskl/Debug: Connected to TASK "regress2:taskl"
regress2:taski/Debug: list coanect

List of connectioms :-

"regress2:taskl"

regress2; taskl/Debug: disconnect

NetConnected/Debug: list connect

List of connections :-

NotConnected/Debug:

4.3 Ping

The ping command may be used to determine if a TASK is reachable. Ping simply sends a message and reports
any response, A ping may be sent to any TASK whether connected or not.
Example

NotConnected/Debug: ping "regressZ:task2"
NotConnected/Debug: Ping ackaowledge from TASK "regress2Z:task2"

HA024105C002 2 A GUIDE To THE RESOURCE DEBUGGER 5

e

TS

SR R

EELE 2]

INTRERNAL

4.4 Quitting

bt
When the debugger is quit a disconnect is issued to all connected TASKs.

5 Internal

This section lists all nternal commands, that is cornmands which have no effect on any other TASKs, ie command
thai do not require any conneciion o be established.

5.1 Help

Heip is available at 2 levels :

i
-1

e A list of all commands

¢ Spectfic help on any individual command

5.2 Macros

String macros may be defined for commonly used command combinations or any frequently used string com-
bination.

define

Is used fo define a string macro.

undefine

Is used to delete the string macro.

list macros
s used to list all defined macros.

Example

NotConnected/Debug: define cnx="connect \"regress2:taski\""
NotConnected/Debug: define dax="disconnect”
NotConnected/Debug: cnx

regress2:taskl/Debug: Connected to TASK "regress2:taskl™
regress2:taski/Debug: list macros

Macro Name Macro Definition

dnx disconnect

cnx connect "regress2:taski"
regress2:taskl/Debug: dnx
NotConnected/Debug:

g HAG24105C002 2

REFERENCES

5.3 Delays

There are 2 debugger commands which introduce delays. These are designed for use with scripts but may be
used interactively. Whilst in a delay the debugger will not read any incoming imessages.

| waill

The wait cornmand introduces a delay in seconds between this command and the next, This may also be used
Lo wait for an Outstanding operation on a VAR REFERENCE io complete { see §6 }.

fpause|
H

The pause command introduces a delay in seconds hefween consecubive commands Setting a pause of 0 s
equivalent to turning off the pause.

6 References

The references facility can he viewed as creating dynamic, manaally controlled VAR REFERENCES { see [1] for
more detail).

In fact the underlying messaging used is exactly that used by VAR REFERENCEs.

In order to implement these VAR REFERENCES the debugger uses an Outstanding Operation Table { OOT J,
just like an ST TASK (11}

It is however possible to create references that are not TASK coherent.

6.1 Setting a Reference

The first stage in establishing a debugger reference is that of specifying the name of the veference and the
associated ref string. The template is then read. There is no template matching stage as there is nothing
to match against. The reference string syntax is the same as that for VAR REFERENCES (see [1}). Certain
ref strings particularly those containing [1 may need to be enclosed in "". The reference string must contain
a RESOURCE specification unless the debugger the reference is to something on the current TASK {ie the TASK
whose name is given in the prompt).

If a reference is to contain services then the number of services must be specified when the reference is created
by appending “with service” or “with <Number> services”. Fach service must then have its inputs and
ontputs specified as a list. This list must not be empty. If the service has no inputs or outputs of interest then
the “waiting” output can be specified to ensure the ref string list is not empty. The template is not considered
read until all the service ternpiates have also been read.

No read or write operations may be performed on the data until the ternplate has been read. The debugger
will create some local data objects of the correct size, these will be uninitialised.

expand

Expand a reference to a FUNCTION_BLOCK or structured data type. Thisisa “lagy” way of creating a reference
in that is does require knowledge of the interface. This method may result in the inability to re-read a template
il the reference string that would be required for the expanded references is longer than 255 characters. In
these circumstances an error message will be reported.

list refs

HAD24105C002 2 A GumE To THE REsourcE DEBUGGER 7

mETEET

R g B

RErprENCRS

List all debugger references.

Any debugger reference once created may be deleted. A debugger reference may be deleted with any number
of outstanding operations { including the template read).

Example
NotConnected/Debug: ref ri='regress2:progl.nargs”
NotConnected/Debug: Reference ri template read
NotConnected/Debug: ref r2="regress2:progi{error,resultl}”
HotConnected/Debug: Reference r2 template read
NotConnected/Debug: ref r3="regress2:progi.args(3]"
HotConnected/Debug: Refersnce r3 template read
HotConnected/Debug: list refs
Name VarRefersnce
r3=regress2:progl.args 3]
r2=regressZ:progl{error,result}
ri=regressZ:progi.nargs
NotConnected/Debug: unref r2
HotConnected/Debug: list refs
Name VarReference
r3=regress2:progl.args[3]
ri=regress2:progl.nargs
NotConnected/Debug: ref rb="regressb:progl.Lecal”
NotConnected/Debug: Reference rb template read
NotConnected/Debug: list ref b
rb=regressb:progl.Local

1:progl.Local [5.0.1] INTERNAL FUNCTION_BLOCK=7
FKotConnected/Debug: expand rb
HotConnected/Debug: Reference rb5 expanded
NotConnected/Debug: Reference rh template read
HotConnected/Debug: list ref rb
r5=regresss;:progl.Local{WakeUp,Who,Cycle,Woken, WhoFrom,Change, NextCycle,LastCirc
um,LastCycle}
:progi.Local.WakeUp [5.1.1] INPUT BOOL=?
:progi.Llocal.Who [5.1.2] INPUT STRING=?
iprogl.Local.Cycle [6.1.3] INPUT DINT=?
:progl.Local.Woken [5.1.4] OUTPUT BOOL=7
:progl.Local.WhoFrom [5.1.5] OUTPUT STRING=?
:progi.Local.Change [5.1.6] CUTPUT DINT=?
:progi.Local.NextCycle [5.1.7] OUTPUT DINT=?
:progl.Local.LastCircum [5.1.8] INPUT_OUTPUT DINT=7
iprogl.Local.LastCycle [5.1.9] INPUT_OUTPUT DINT=?

SErRE e

W oE R W

6.2 The Data

store

Once the template has been read it is possible to overwrite any item of data by storing a new value. Each
individual item (addressable by name or number), including each element of any array is individually writable.

Jt should be noted thal all enwmerated lypes must be wrillen as a numeric velue in the range 0 lo 255. No
checking can be performed to verify that this is a valid value for the enumeration therefore this feature should
be used with care

8 HA024105C002 2

HEFERENCES

Once a template has been read the debugger reference data may be read, with the read command. Each read
will overwrite all the current values held locally.

Whilst a debugger reference may be made to the TASK, PROGRAM and FUNCTIGN_BLOCK types it is not possible
to perform any operations on the data. It will not be possible to store a value and therefore not possible to
issue a write. It will hboweaver be possible to issue a read but ne data is actually read and the values when listed
will all be marked with a 7.

write

Onee the template has been read and ALL values have been assigned a value either by reading the debugger
reference or storing a value locally then the whole of the writable part of the debugger reference may be writven.
Only INPUTs, IN_OUTs, INPUT_OUTPUT: and INTERNALs may be written.

lservice

Once the template(s} have been read any of the services specified in the reference may be executed. No check
is made that all inputs have been written to before the service is executed, ag in general this may not be a
requirernent.

SCaL

Once the template has been read a scan time may be sel up which will cause the data to be read every scan
period.

[list ref

List an individual debugger reference with all its type, mode, value and GAD information.

Ti should be noted that all enumerated values are displeyed as a numeric value in the range 0-255, il is therefore
necessary lo know whai the enumeration is to terpred this,

HA024105C002 2 A Gupe To THE REsouRcE DEBUGGER 9

CUEWEERTIUER M

i

AR

REFERENCES

Example

HotConnected/Debug:
HotConnected/Debug:
NotConnected/Debug:
HotConnected/Debug:
NotConnected/Debug:
HotConnected/Debug:
r=Perform:progi.ini

ref r="Perform:progl.inl"
Reference r template NOT read
unref r

ref r="Perform:progi.Ini”
Reference r template read
list ref r

1:progi.Ini [4.0.15] INTERNAL DINT=7

HotConnected/Debug:
HotConnected/Debug:
NotConnected/Debug:
r=Perform:progi.Ini

read ¥
Reference ¥ read
list vef ¥

i:progi.Inl [4.0.15] INTERNAL DINT=C

NotConnected/Debug:
NotConnected/Debug:
r=Perform:progi.Ini

store r=5
list ref r

1:progl.Inil [4.0.15] INTERNAL DINT=& { Stored }

HotConnected/Debug:
HotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnacted/Debug:
HotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:

write v

Reference r written

ref r2="Perform:Progli{Locall,Local2,Local3{Inl,In2}3}"
Reference r2 template rsad
read r2

Reference r2 read

store rZ.Locali=8

store r2.Localz[4]=9

store r2.2[5]=E

store r2.3=80

store v2.In2=67

list ref x2

r2=Perform:Progli{locali,Local?,Local3{Inl, In2}}

i:ProgUi.Locall [8.

0.13] INTERNAL DINT=8 (Stored)

2:ProglUl.Local2 {8.0.14] INTERNAL ARRAY [1..32] OF DINT O, O, O, 9, 5, 0, 0O,
9, 0,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0(Stored)
3:ProgUl.Local3.Inl [8.13.1] INPUT DINT=90 { Stored)
4:ProgUi.Local3.In2 [8.13.2] INPUT DINT=87 (Stored)

KotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:
NotConnected/Debug:

ref s="regressi4:progl.Sum” with 2 services
ref s.add=inl,in2, cut

ref s.subtract=inl,in2,cut
Reference s template read
Reference s.add template read
Reference s.subtract template read
store s.add.inl=5b

store s.add.in2=7

service s.add

Service s.add Completed

store s.subtract.inl=3

store s.subtract.in2=2

service s.subtract

Service s.subtract Completed

10

HA024105C002 2

T LT

E

REFERENCES

HotConnected/Debug: list ref s
s=regressid:progl.Sum
i:progil.Sum [4.0.13] INTERNAL FUNCTIDN_BLOCK=7
g.add=progl.Sum.add{inl,in2, out}
1:progl.Sum.add.inl [4.14.1] IEKPUT DINT=5
2:progl.Sum.add.in2 [4.14.2] INPUT DINT=7
3:progi.Sum.add.out [4.14.3] OUTPUT DINT=i2
5.subtract=progi.Sum.subtract{ini,in?,ount}
i:progl.Sum.subtract.ini [4.15.1] INPUT DINT=3
Z:progi.Sum.subtract.in2 [4.15.2] INPUT DINT=2
3:progl.Sum.subtract.out [4.15.3] DUTPUT DINT=1

list properties

List all the properties of the debugger reference as if 1t were a 5T VAR REFERENCE,

In addition to the properties the internal state of the reference is displayed. This will have one of the values

e Uninitialised

e Matching

e MatchingServiceParents
e MatchingServices

e Matched

¢ Reading

e Writing

e Servicing

+ ReadError

¢ WriteError

¢ MatchError

There are 2 additional properties listed which are not available from within 5T, these are -

coherent - This indicates if the reference is TASK coherent or not.

dataChanged - This is similar to “dataRead except that it reports if the data values have changed since that

last time the property was read.

HA0243105C002 2

A GUIDE TO THE RESOURCE DEBUGGER 11

R

CIRTERRT U

TENEET B

HEFERENCES

Example

NotConnected/Debug: ref r="regress2:progl.nargs"
NotConnected/Debug: Reference r template read
NotConnected/Debug: read T

NotConnected/Debug: Reference r read
NotConnected/Debug: write r

YotConnected/Debug: Reference r written
NotConnected/Debug: list properties r

Properties of ¥

ref
resclution
scan
timeStamp
state
status
readStatus
writeStatus
servStatus
newData
dataChanged
coherent

‘regressl:progl.nargs’
UVltimate

T#Os

DT#1993-03-01-13:08:25 QT#0ms
Matched

Ok

Ok

Ok

Undefined

i

Pk e

6.3 Exercising

exercise|

The exercise command may be used to generate repeated reads or writes. The exercise command reports
the time taken to receive all replies. It will also timeout if the responses are not received in sufficient thme.
An exercise may be used to give a rough guide to the throughput of an equivalent ST VAR REFERENCE under
comparahle conditions.
Whilst an exercise is in progress any debugger references with a scan time set wiil not be scanned.

Example

NotConnected/Debug: exercise 10 read r
Exercise complieted in 1 seconds
NotConnected/Debug: exercise 10 write T

Exercise completed in 1 seconds

6.4 Waiting

It is possible to wait for an cutstanding operation to complete.

Example

HotConnected/Debug: read r
NotConnected/Debug: wait r 10
NotConnected/Debug: Reference r read

HA024105C002 2

Eid=H

T

CTEREET £

INSPECTING DATA

7 Inspecting Data

7.1 What Is

There are 2 what is commands for printing oul information about ST items. The form " is taken as the
RESOURCE. Both commands take an optional leading RESOURCE name { in the same form as a reference string
Y if this is not supplied then the command is issued to the currently connected TASK.

| whatis

The command prints out information any visible 5]
dimengions if found,

Whatis |

Provides a more detailed description.

_—

itern. It prints out the GAD, mode, type, name and array

Prints eut the GGAD, mode, type, name and array dimensions of the object, the number of children if complex
and the same for each of the oljects children.

Example

NHotConnected/Debug: connect “"regress2:taskl”
regress2:taskl/Debug: Connected to TASK "regress2:taskl™
regress2:taski/Debug: whatis ""
regress2:taskl/Debug:

[0.0.0] INTERNAL regress2 : RESQURCE ;
regress2:taskl/Debug: whatis "progi.nargs"
regress2:taski/Debug:

£3.0.3] INTERNAL nargs : USINT ;
regress2:taskl/Debug: Whatis "progl"
regress2:taskl/Debug:

{3.0.0] INTERNAL progi : PROGRAM progreg2 ;
with 10 children

regress2:taski/Debug:

[3.0.1] INTERNAL init : STEP Step ;

[3.0.2] INTERNAL calc : STEP Step ;

[3.0.3] INTERNAL nargs : USINT ;

[3.0.4] INTERNAL args : ARRAY [1..6] OF REAL ;
[3,0.5] INTERNAL operators : ARRAY [1..5] OF STRIKG ;
[3.0.8]7 INTERNAL result : REAL ;

[3.0.7] INTERKAL error : STRING ;

[3.0.8] INTERKAL calculation : STRING ;

[3.0.9] INTERNAL docalc : BOOL ;

[3.0.10] INTERNAL i : USINT ;

regress2:taski/Debug: disconnect

NotConnected/Debug: Whatis "regressi4:progl.Sum.add”
NotConnected/Debug: Whatis "regressi4:progl.Sum.add"
[4.13.1] INTERNAL add : SERVICE add ;

with 5 children

NotConnected/Debug:

fa.14.1] INPUT ini : DINT ;

{4.14.2} INPUT in2 : DINT ;

[4.14.33 QUTPUT out : DINT ;

[4.14.4] OUTPUT waiting : USINT ;

[4.14.5] INTERNAL pending : DINT ;

HAD24105C002 2 A GUIDE To THE RESOURCE DEBUGGER 13

5T

| E

print |

Prints the current value of any visible ST ifem.

Attempts lo alter the value of any visible item. The previous value of the item is reported when the set is
complete,

Example

regress2:taski/Debug: print progi.nargs
regress2:taski/Debug: O
regress2:taski/Debug: set progl.nargs=65
regress?:taski/Debug: Previous Value = O
ragress2:taski/Debug: print progl.nargs
regress2:taski/Debug: &5

Print and set are fairly simple commands which do not use the VAR REFERENCE mechanisms. In general a
reference should be set up to either read or write data.

Both print and set treat all items of data to be one of

STRING For ali 5T STRINGs
DINT For all integer values eg INT, USINT, BOOL, EDGE
LREAL For both REAL and LREAL

Set recognises the time types TIME, DATE, DATE.AND.TIME, TIME OF.DAY as input { eg t#10s) but
they are all printed as DINTs.

8 ST

I¢ some FUECTION_BLOCKs of a RESOURCE have been compiled with the debug option then it is possible to debug
those sections of ST. Up to a total of 5 trace or break points may be added at any TASK.

A line of ST should only contain one ST statement otherwise multiple trace/break peints will be set in between
the statements on the line. For the purposes of debugging trace/break points will only have effect on lines of
ST that actually execute code.

14 HA024105C002 2

8.1 Trace

A trace point is a point in the ST which is reporied to the debugger whenever the code execution reaches it.

A trace point may be established at any of the following.

& Un enbry to a FUNCTION_BLOCK
& On exit from a FUNCTION_ BLOCK

e On executing a line of 371

Fach arrival at a trace point generales a message 10 the debugger.

trace entry | or

Trace entry to a FUNCTION_BLOCK.

trace entry fblock %

f . o - N
trace exit]or| trace exit fhlock |

Trace exit from a FUNCTIOE_BLOCK.

| trace eié;her" or [trace either fb]ocki

Trace both entry and exit from a FUNCTION_BLOCK.

1trace entry all ‘ or } trace entry all fblocks

| trace exit all | or | trace exit all fblocks

[trace either all|or | trace either all fhlocks]|

Trace entry and/or exié from all FUNCTION_BLOCKs,

Example

regress2:taskl/Debug: trace entry fblock progi

regress2:taskl/Debug: Trace/Break on block instance progl added
regress2:taskl/Debug: block type junkprog source line 64 — Entry into
regress2:taskl/Debug: block type junkprog source line 84 - Entry into
regress2:taskl/Debug: block type junkprog source line 64 ~ Entry into

trace at

Trace execution of a particular line of ST in a FURCTION_BLOCK. The trace 1s issued before the line of 5T is
executed.

HAG24105C002 2 A GUIDE TO THE RESCURCE DEBUGGER 15

Fxample

NotConnected/Debug: connect "regress2:taski®

regress2:taski/Debug: Connected to task "regress2:taskl"®
regress2:taski/Debug: trace at progl 45

regress2:taskl/Debug: Trace/Break on block instance progl added
regress2:taskl/Debug: block type junkprog scurce line 45 - On Line
regress2:taskl/Debug: block type junkprog source line 45 - On Line

e

Hist traces:
| T —

This lists all trace points.

‘deit:t‘i;@ trace entry t or [delete trace entry E’i}iucké

W R L .
delete trace exit]or ‘ delete trace entry fhlock

FUEETIE

| delete trace eithez‘[or ; delete trace either fhlock |

&

Delete trace entry and/or exit from a FUNCTION_BLOCK.

‘(‘ieiete trace entry all | or] delete trace enfry all fblockﬂ

delete trace exit all| or | delete trace exit all fblocks

* delete trace either all L or| delete trace either all fbiocki

Delete trace entry and/or exit from all FUNCTION_BLOCKs.

| delete trace all]or | delete trace all fhlocks|

Delete all trace points on all FUNCTION_BLOCKs.

8.2 Break

A break point is a point in the ST where execution stops until commanded to continue.

A break point may be established at any of the following

e On entry to a FUNCTION, _BLOCK
¢ (On exit to a FUNCTIODN_BLOCK

e On executing a line of ST

16 HAG24105C002 2

=T

Eacl arrival at a break point is reported fo the debugger.

'break entry g or | break entry fhlock

Break on entry to a FUNCTION_BLOCK,

]bz‘eak exit ! or | break exit ﬂ}ioci{i

Break on exii {rom a FUNCTION _BLOCK.

‘ break eitheror | break either fbiocké

I

Break on either entry or exit from a FUNCTIGN _BLGCK.

l‘breai{ entry all i or | break entry all 'fbl.ocksl

| break exit all| or | break exit ail fbiocks!

| break either all|or l break either all fhlocks |

Break on entry and/or exit from any FUNCTION_BLOCK,
break at

Break before a particular line of 8T in a FUECTION_BLOCK.

list breaks

This lists all break points.

continue

Continue execution of the 8T,

step

Single-step through the 5T,

-
=
b
fage

Single-step through the ST without entering any FUNCTION BLOCKs called by this FUNCTION_BLOCK.

display

Disgplay the ST of this FUNCTION_BLOCK.

£

CUEREAETE

HA024105C002 2

A Gums 7o THE ResoURCE DEBUGGER 17

BEDIRECTION

Example
NotConnected/Debug: connect “"regress2:taskl”
regress2:taskl/Debug: Connected to TASK "regress2:taskl"
regress2:taski/Debug: break at progl 45
regress2:taskl/Debug: Trace/Break on block instance progl added
regress2:taskl/Debug: continue
regress2:taskl/Debug: block type junkprog source line 45 - On Line
Print (stri := ’Write while readingdN®) ;
regress2:taskl/Debug: step
regress2:taski/Debug: block type junkprog source line 46 - On Line
Remote := Count ;
regrese2:taski/Debug: step
regress2:taski/Debug: block type junkprog source line 47 - On Line
Reading = © ;
regress2:taskl/Debug: continue
regress2:taski/Debug: block type junkprog source line 45 - On Line
Print { stri := ’Write while reading$k’ Yo
regress2:taski/Debug: list breaks
regress2:taski/Debug: breaks set -
Block GAD [5.0.0] Break events (Line 45)
regress2:taskl/Debug: delete break all
regress2:taski/Debug: continue
regress2:taskl/Debug: display 44,48
IF { Remote status = 1 AND Reading = 1) THEN
Print (stril := ’Write while reading$ll’) ;
Remote := Count ;
Reading := 0 ;
END_IF ;
regress2:taski/Debug:

delete break en%.ry} or | delete break entry ﬂ)lockl

delete break exitor [delete break exit fblockJ

delete break eithet‘| or I delete break either fblockl

Te delete any FURCTION_BLOCK entry or exit break point.

delefe break entry all [or ! delete break entry all fblocksJ

delete break exit all| or | delete break exit all fblock |

| delete break either all|or | delete break either all fhlock |

To delete any FUNCTION_BLOCK entry or exit for all FUNCTION BLOCKs.

1 delete break aﬂ] or| delete break all fblocksl

To delete all break points in all FUNCTION _BLOCKs.

Dreleting a break point(s) does not cause a continne.

9 Redirection

It is possible to redirect both input and output to the debugger. By default the debugger reads all input from
the keyboard and sends all cutput to the screen.

Al input or output can be redirected to a file(s).

18 HA024105C002 2

Hou

]
i

A

9.1 Transcription

ro————
transcribe |

The transcribe command can be used o copy all commands to a file.

9.2 Scripts

A debugger seript mnay be suppled on stare up with the -d option { §11). This will cause all aput to be read
from this file. No prompts are issued whilst reading from this file.

10 Routers

The debugger provides the facility to send Router messages which provide information abou$ the connections
{ and potential connections) between different RESOURCEs. Only Router tasks are capable of responding to
these messages, all other tasks will ignore them.

Router messages { especially setting proxies) ought to be performed using the roumsg tooi 13].
list nodes
List all nodes to which this Router has sent messages.

list media

List all the media supported by this Router.

i

list proxies

List all node proxies set up on this Router.

list aes

List all the application entities identified by this Router.

Hist local aes

List all the application entities on this Router’s node.

list medium

List the state of the medium.

sel proxy

Set up a node proxy.

i

set logger

Direct router log messages to the debugger.

HAB24105C002 2 A GumEe ro THE REsourcre DEBUGGER 1Y

EFEER

CUENE RN

CUETEET

BOUTERS

Fxample

NotConnected/Debug: router 149.121.128.28% list nodes
NotConnected/Debug:

Router "“149.121.128. 20"

2/32 Fodes :-

"2.2.2.2" on UDP

"1,1,1.1" on UDP

NotConnected/Debug: router 149.121.128.29 list media
NotConnected/Debug:

Router "149,121.1{28.28"

1 Media :-

unp

KotConnected/Debug: router 149.121.128.28 list medium UDP
KotConnected/Debug:

Router '149.121.128.28" UDP Active, Msgs Sent = &, Received = 8
BotConnected/Debug: router 1486.121.128.29 list ass
NotConnected/Debug:

Router "149.121.128. 28"

2/64 Application Entities :-

“ROUT*™ "Router* on 1.1.1.1%

"ROUT" "Router™ om 2.2.2.2

BotConnected/Debug: router 149.121.128.29 list leccal aes
HotConnected/Debug:

Router "149.121.128.29"

3/8 Local Application Entities :-

“ROUT" “Router”

"RMP" "regressZ:taskl"

"REMPY "regress2:"

WetConnected/Debug: router 149.121.128.29 set proxy 3.3.3.3 with 1.1.1.1
NotConnected/Debug:

Router "149.121.128,29" Proxy sst

NotConnected/Debug: router 149.121.128.28 list proxies
NotConnected/Debug:

Router "14%.121.128.20"

1/8 Proxies :-

"3.3.3.3" with "1.1.1.1"

The above example indicates the the on Router node *146.121.128.2%” has identifled 2 { out of a maximum
capacity of 32) other nodes “1.1.1.1” and “2.2.2.2” both on the UDP medium. The Router only supports
the UDFP medium which is currently “Active” and over which 6 messages have been sent and 6 received. This
Router has identified 2 other AEs (both of them Routers). The node “149.121.128.29” has itself 3 AEs (}
Router, and § RESOURCE TASK “taski”}. Then the Router is instructed to use “1.1.1.1”7 as proxy for “3.3.3.37,
ie all messages for “3.3.3.3” will be sent via “1.1.1.17.

20 HA024105C002 2

RoOUTERS

11 Debugger Invoke Options

The following options may be supplied to the debugger task { resdebug)
<ProcessName> The name of a CMS process for the debugger

-d <FileName>

-1 <CMS buffers> Buffer distribution

-0 <007 size> Outstanding Operation Table

-1 <Length> Hesource message queus length.

«tot < Timeowt> The Read Template timeout in miliseconds

~tor <Timeout> The Read timeout i milliseconds

-tow < Timeout> The Write timeout in milliseconds

-y <Key> Resource IPC key.

e
=

HAD24305C002 2 A GuUmE To THE RESOURCE DEBUGGER 21

ROUTERS

12 Debugger Command Summary

Below is a Tull description of the dehugger commands in Bakus-Naur Form.

task_address ::='"' [resource_name] ’:’ task_name *'"’
break_or_trace.args ::= [’entry’ | *exit’ | ’either’ I ’fblock’ fblock_name |
["entry’ | ’exit’ | ‘either’] fblock_nams |
[?entry’ | ’exit’ } ‘either’ 1 *all® |
[‘entry’ | ‘exit’ } ‘either’] °all fblocks’ |
thlock_name line number
break_command ::= ‘break’ break_or_trace_args
connect_command ::= ’connect’ task_address
delete_break_command ::= ‘delete break’ trace_or_break_args i
‘delete break’ all
delete_trace_command ::= ’'delete trace’ trace_or break_args i
‘delete trace’ all
disconnect_command ::= ’disconnect’ task_address |
‘disconnect’
exercise_command ::= ‘exercise’ times [‘read’ | ‘write’] ref_name
help_command ::= ’help’ | ‘help’ command_name
input_coemmand ::= ‘<’ [<! file name
list_connect_command ::= ‘list connect’
list_properties_command ::= ’list properties’ ref name
list_ref_command ::= 'list ref’ ref_name
list_refsg_command ::= 'list refs’®
list_resources_command ::= ’1ist resource’
output_command ::= '>' | '>' file_name
pause_command ::= ’‘pause’ seconds
ping_command ::= ’ping’ task_address
print_command ::= ‘print’ hierarchic_name
guit_command ::+= ‘guit’
read_command ::= 'read’ ref_name .
router_list_aes_command ::= ’router’ node ’*list aes?
router_list_local_aes_command := ‘router’ nede ’list Jlocal aes’
router_list_media_command ::= ’‘router’ node ’'list media’
router_list_nodes_command ::= ’router’ node ’list nodes’
router_list_medium_command ::= ‘router’ node ’*list medium’ medium_name
router_list_proxies_command ::= ’router’ node ’'list proxies’
router_set_proxy_command ::= 'router’ node ’'set proxy’ node 'with' node
router_set_logger_ command ::= ‘router’ node ’set loggex’
ref_command ::= ’ref’ ref_name ['.’ service_mame] ’'=’ reference_string
scan_command ::= ’scan’ ref_name scan_time
expand_command ::= ’expand’ ref_name
service_command ::= ’'service’ ref_name ’'.’ service_name
store_command ::= ’store’ ref_name [.’ service_mame] [’.’ element] [’[’ index '1’]
'=? constant_value
trace_command ::= ‘trace’ trace_or_break_args
transcribe_command ::= ’transcribe’ file_name | ’transcribe’ '"’file_name’'"’
unref_command ::= ’unref’ ref_name
wait_command ::= ‘wait’® seconds
whatis_command ::= *Whatis’ hierarchic_name ! ’whatis’ hierarchic_name
| 'Whatis® *""* | ‘’yhatis? "'’
write_command ::= ‘write’ ref_name

—o(Jo+—

22 HA024105C002 2

