CONTROLLED DISTRIBUTION ONLY IF COLOUR STAMPED

Resource Manager

Resource Manager Release 1 Specification

CONTROLLED DISTRIBUTION LIsT

Brian Smith

John Juer

Bob Lewis

Nigel Kingsley

MASTER

NI éﬂ .bégi}é v e 5Bl Lﬁjﬁﬂ

é‘a«i r(2asa

v i ;ﬁf@}f

APPROVAL FOR Author Checked ELECTRONICALLY STORED DOCUMENT
DOCUMENT REVISION M DIRECTORY PATH
JOB TITLE /Sig'nature Date pine:/users/cell fresource/docs/specs/specl.tex
NO SIGNATORY ORIGINATING DEPT: ENGINEERING
Systems Technical Director N Kt 131/5/4) CONTROLLING DEPT: ENGINEERING
Engineering Technical Director BT T ak a NO. of SHEETS
Chief Software Engineer A A 13/5/44 CONTROL SHEET 27
Z

AUTHOR: I W Juer

DOC. TYPE: Software Design Enhancement Specification

{

DOCUMENT
CONTROLLED DISTRIBUTION COPY | pREvicioN
ONLY IF COLOUR STAMPED ON

~ANTROL SHEET. 1

' EUROTHERM | g

© Copyright 1991 Eurotherm Limited

Resource Manager

Resource Manager Release 1 Specification

DOCUMENT NUMBER SHT.

HP024105

REVISION HISTORY
Revision Date | Changes
0 | May 13, 1991 | Initial Draft
1 | May 31, 1991 | First issue version
Contents
1 Scope 3
2 Related Documents L= 3
3 Imtroduction 4
4 Data exchange G
61 Var REfETeNCe . o « o o v v o o s oo et T T il
4.1.1 Specifying the remote data Objects -« < o oo 7 §
E 419 Reading the remote informationo 11 —
; 413 Reading and writing temote datao m T T T 12
414 Messaging and task bufferso T T T 13 g
415 Examining thestate ofavrel ... oo T T 13
41.6 Timeouts and falluges . . . oo oo s o T T T T T 14
417 Summary of Propertieso T 15
5 Resources and Tasks 15
¢ Networks and network setup 17
A 11 I 17
6.9 EILIN. o o o oo oo m e T T 17
6.8 Network BHAGIME « - « -« v occ v mommer s s T T T 18
CONTROLLED DISTRIBUTION COPY gg&w | Resource Manager
ONLY IE COLOUR STAMPED ON .
,EONTROL SHEET. Resource Manager Release 1 Specification
" EUROTHERM El DOCUMENT NUMBER SHT.
© Copyright 1991 Eurotherm Limited HP024105 2

7 'Tools 18

7.1 Taskand loaders v v o ittt e e e e e e e e e e e e e e e e 19

N s o 37 < 2 19

0 T v - a3 > A T T T TR 19

T4 RouMsg . . o o v i i oo e e e e e e e e e 20
8 Debugging facilities 20

8.1 The Resource DebUgEET . . . o o v v i vt v v b b e s e m e e e n e e e e e e e 20

8.2 Error monitoring blocks s e e e wx . 24
9 Features for PO 2.5 27
18 Features for PO 2.6 27
1 Scope

This specification describes the features to be provided by the first release of the Resource Manager. Initially
this will affect the Production Orchestrator, later on the PC3000. For the purposes of this document, however,
the Resource Manager will be treated as an enhancement to the Production Orchestrator only, and use of the
Resource Manager in the PC3000 will be a separate project.

Two releases of the Resource Manager for the Production Orchestrator will be made, and these are both
described here. These releases will have to be co-ordinated with the first release of EILIN, (see document {1})

2 Related Documents

[1] HP(}24106 EILIN
[2] HP024081C300 PC3000 Muiti-Tasking system

[3] IEC65A/WG6 Programmable Controllers Programming Languages

b TN

THERITEMR G ot Ed

Y

R e

CONTROLLED DISTRIBUTION COPY W Resource Manager
ONLY IF COLOUR STAMPED ON .
~WNTR
OL SHEET. Resource Manager Release 1 Specification

EU ROTH ERM El DOCUMENT NUMBER SHT.

® Copyright 1991 Burotherm Limited HP(24195 3

3 Introduction

A Resource is defined in reference [3] section 1.2.1 as a “signal processing function”, its “map-machine interface”
and “sensor-actuator” interface™: in the context of this document two Burotherm products can be considered
as Resources — the PC3000 and the Production Crchestrator. In more general terms we consider a Resource
to be a node on a network {or networks) such as ethernet or EILIN that executes a set of Structured Text tasks
as defined in reference [3] which perform control and display of process or production data (i.e the functions

described in 1.2.1 of IEC65 [3]}.

In IECIE5 a Resource is actually a ST language construct that encapsulates the tasks and programs running in
a physical Resource; our implementation of 5T is extended to support this construct as part of the Resource
Manager project. (The mechanism in reference [3} for data exchange between Resources is however not
supported by the Resource Manager which has a more general purpose and flexible mechanism, described in

this document.) .

The Resource Manager is the code and supporting date built from the definition of an application iz 5T that
allows that application running on one Resource in a network to import and export data from any other nodes
on the network in a reasonably simple and transparent way. If the node supports a deterministic network such
as ETLIN and a deterministic task execution model (such as in the PC3000) this will allow Structured Texs
applications to perform distributed control.

The Resource Manager provides

o A Structured Text database for a Resource, built using the ST compiler and a Resource loader
o Methods for interrogating the database from any ST task, and interactively using a debugger

o Methods for monitoring the data interchange between tasks, and hence for tuning applications

In the rest of this document the word “Resource” is used to denote the Resource Manager code, the Resource
Manager database, the physical node or Resource the code and database exists in and the ST code actually
being executed. The context should make it clear which is meant.

Figure 1 shows an example of some Resources and tasks. The boxes labelled “Node 1”7 and “Node 27 represent
two hardware Resources (for example 386 computers} connected by a network. Node 1 contains a Resource with
two tasks, “task1” and “task2”. Node 2 is a Resource running only “task3”, Taskl is in communication with
task? using the local Resource database, task?2 is communicating with task3 using both Resource databases
and the network.

'Remote data can be grouped (or blocked) as required by the local appiication. Remote data appears in a local
function block or variable as if it were local. Remote points from disparate remote 5T objects can be treated
as one local object, provided they all are owned by one remote Structured Text task (and hence one remote
Resource). So, for example a set of remote setpoints can be written or read in one communication transaction.

The Resource Manager also allows for a limited degree of interactive Structured Text debugging (across a
network if required); ST data may be displayed and printed and task execution susperded on entry or exit
from a block, or the whole task.

As suggested by figure 1 the Resource Manager works using messages; tasks receive messages in a message
input queue, and process messages at the beginning of their task execution cycle. A shared Resource database
held in RAM allows access to the ST data owned by a task (i.e the data of the blocks the task is executing).
Tasks do not know whether or not they are sending local messages (to a task in the same Resource) or remote
(to a task in another Resource); this is handled by the Communication Messaging Services (CMS). A special
built in task cailed the Router deals with incoming and cutgoing messages to remate Resources. 14 can also

DOCUMENT

CONTROLLED DISTRIBUTION COPY | REVISION ‘Resource Manager
ONLY IF COLOUR STAMPED ON .
NTROL SHEET. Resource Manager Release 1 Specification

EU ROTH ERM EI DOCUMENT NUMBER SHT.

® Copyright 1991 Eurotherm Limited HP024105 4

FID CURITAE

—

=
=

Figure 1: Resources and Tasks on a network

Node 1

Resource Database; Resource 1

taskl task?

Node 2

Resource Database: Resource 2

task3

Physical Network (e.g Ethernet)

CONTROLLED DISTRIBUTION COPY | ROGUMENT 1 Resource Manager
ONLY IF COLOUR STAMPED ON
~ANTROL SHEET. 1

Resource Manager Release 1 Specification

EUROTHERM El DOCUMENT NUMBER

® Copytight 1991 Eurotherm Limited HP{24105

SHT.

(A)2

Y

pass messages from one remote Resource to another remote Resource allowing routing of messages between
EILIN and ethernet for example. The Resource Manager code allows for graceful failure and recovery when
messages are not delivered.

This design means that any data exchanged is antomatically “coherent” as defined in 13} section 2.7.2 (i.e all
data received by one task from another in one message is from the same cycle of the other task. This is very
important for control applications. It also means that the design allows for deterministic execution of tasks
— tasks are under no obligation to reply to a message if they have not the time, they can merely ignore it
and the system will recover.

The design is also general purpose; it supports multiple processors accessing a common shared memory Re-
source database and single processors on boards connected by a bus on one Resource. In the latter case the
Resource database is duplicated in the memory of each processor card, and the Router task on each board
deals with messaging between boards.

4 Data exchange

The Structured Text language has been extended to allow import of remote data. Whereas in [3] Resources
exchange information through fixed predefined communication blocks this extension allows for

o Interrogation of a Resource to query what data is available and validate any data exchange

s Grouping of remote data to provide the local view as is required by the local application .

This section describes the mechanisms that allow this. (Note later releases of the Resource will allow CDL
attributes — in particular the atéribute “addressable” will allow some data items to be inaccessible}.

4.1 Var Reference

Every Function Block or Program can have an additional declaration section, the reference section. All data
specified in this section is remote data, where remote means that it has its definining definition somewhere
other than in the current block, though it may well be in the same Resource or indeed task. The reference
section is denoted by the keyword REFERENCE appearing after the keyword VAR. Note therefore that
references are internal to the block they are defined in.

For example

PRCGRAM exl

VAR
writeflag: BCOL;
id: STRING;

END_VAR

VAR REFERENCE
remflag: BOOL;
remid: STRING;

EXD_VAR

CONTROLLED DISTRIBUTION COPY | DOCUMENT Resource Manager
ONLY IF COLOUR STAMPED ON 1
NTROL SHEET. Resource Manager Release 1 Specification

EUROTHERM

© Copyright 1991 Eurotherm Limited

El

DOCUMENT NUMEER
HP024105

SHT.

THIME

TRIET

B

has a reference section which contains two remote objects remflag and remid.

Any object may be declared to be a reference, from simple variables of any type, to arrays of any type, to
function blocks.

References have a set of “properties” which are predefined built in variables. Properties may be assigned or
read or both. Properties cannot be wired to. Properties are used to control and monitor the reading and
writing of data via the reference.

The first stage in accessing remote data is specifying where it is and then matching it to the local data. If
this operation is successful then the remote data may be read and/or written.

4.1.1 Specifying the remote data objects

A var reference (hereafter known as vref) has an associated string, the ref string. This is set by assffg;ning it
from within the ST program, for example

remflag-ref := ’Resi:pidl.in’;
The ~ tells the ST compiler that the next name is a “property” of a vref object. Property names are predefined,
and the ref property is the reference string. Any ST string or ST string expression may be assigned to it.

A property called curref can be used to read the last set reference string.

Simple types For asimple vref, that is one which is a simple built in ST type (e.g DINT, BOOL, LREAL)
the reference string must specify the full hierarchic path to the object, prefixed by an optional Resource name
and “7. The syntax is '

simple_ref_string ::= { resource_name J ':’ name { ’'.’ name ¥
{using the usual BNF notation where [I means an option, and {} means § or more of the enclosed). name is

any valid 3T name.

The rescurce_name is the name of a remote Resource. If omitted the reference is to someihing in the local
Resource. The list of names separated by . is the full path to the remote object. So in the above example
Resi is the name of the remote Resource, pidi is a block in the remote Resource which contains a variable
in.

When a reference string is assigned the Resource will query the specified remote Resource for information
about the specified object. The information returned is

The type of the remote object (DINT, LREAL etc.)

+ The mode of the remote object (input, output etc.}

The size of the remote object, which will be 1 for simple types and the total number of elements for an
array type.

*

o A fast address for the remote object
¢ The task that owns the remote object
In order for reads and writes to be performed, the type and size must matcn the type, size and mode (i.e

input, output, internal, in-out) of the local vref. In fact for simple types (i.e vrefs that are not blocks) the
mode of the remote object must be internal, since the vref is itself internal.

AT TUR

P (R R

L

CONTROLLED DISTRIBUTION COPY | ROGHIMERT 1 Resource Manager
ONLY IF COLOUR STAMPED ON .
~
NTROL SHEET. Resource Manager Release 1 Specification

E U R O T H E R M E | DOCUMENT NUMBER SHT.

© Copyright 1991 Eurotherm Limited HFP(24105 7

Arrays For arrays of simple variables, as well as the type and mode matching, the total number of elernents
in the remote object must match the number in the local object. So, for example a remote 2 by 10 array
would match a local 10 by 2 array. In general a remote array with 6 dimensions iy, 12, 13, i4, i3, is malches a
local one with dimensions 71, f2, f4, J4: J54 je provided iy #1213 w14 %15 %1 = J1 ¥ J2 % Ja* Ja * J5 * jg. Local data
at position 2y, 4, T3, 74, #5, Ts would be the remote data at position 1, y2, ¥3, ¥4, Us, Us if the same position
has been specified when the array is “flatiened’ into a one-dimensional array. Since i and js are the fastest
varying dimensions this means

Is-’r—ig*(::sw1+1'5*(34-—1+i4*($3~—1+fs*(32"1+i2*($1—1)))))=y6+js*(ys—1+j5*(y4—1-i—
Gat{ya— L jas(y2 — 1+ d2% (w1~ 1))

With the constraints for the array indices (e.g 0 < zg < 7g) this gives a unique mapping between one array
and another.

It is also possible to match to single elements of an array, ot to she whole of a sub-array, in exactly the same
way as the Siructured Text compiler allows array assignment.

For example given a remote array declared as
array: ARRAY{i..10,1..10] OF DINT;
and the local declaration

VAR REFERENCE
matchall: ARRAY(1..10,1..1031 OF DIKT;
matchpart: ARRAY [1..10] OF DIXT;
matchele: DIKT;

then the following would be valid.

matchall ref := ’Remote:prog.array’
matchpart~ref := ’Remote:prog.array[2]’
matchele"ref = ’Remote:prog.array[i,ﬂ’

So it is possible in the reference string to index into remote arrays, and have a successful matck provided the
dimension of the local object matches.

Note that a local array object can only have a single reference string (not an array of them).

CONTROLLED DISTRIBUTION COPY | ROGEMENT | Resource Manager
ONLY IF COLOUR STAMPED ON .
~
ONTROL SHEET. Resource Manager Release 1 Specification

EUROTHERM

@ Copyright 1991 Eurotherm Limited

El

DOCUMENT NUMBER SHT.
HP024105 8

TR RS

TR

Figure 2: A reference to a remote block

Resource Remote
Resource Local

Program Prog
Instance ref
Instance remil i local
o e loc
of type remote ®
which is a
vref =

Function Blocks A vref can also be a function block. The reference string then specifies one or more
remote data objects that are matched to the inputs, outputs and in-outs of the local object. In the simplest
case where only one remote object is specified, the remote object must be a block with parameters which
match the local object’s parameters in name, mode, type and size except that a remote internal may match
a local input, output, in-out or internal. In other words each parameter of the remote object is individually
matched to the local object’s parameters by name as if it were a simple type. (The remote block may have
extra parameters that are not matched). The local block is then an image of (possibly part of) the remote

block’s data.

The diagram in figure 2 should help understanding of the example shown below. Given a remote biock such
as

FUNCTION_BLOCK remote
YAR_INPUT

ini:LREEAL;

in2: ARRAYP1..103 OF DINT;
END_VAR
VAR_CUTPUT

cuti: BOOL;

ignored: BOOL;
END_VAR

which was instantiated in a Resource called Remote in a program called prog as block instance remi, and a
local block definition of the form

FUNCTION_BLOCK local
VAR_INPUT

in1l:LREAL;

in2: ARRAY[1..10] OF DINT;
END_VAR

CONTROLLED DISTRIBUTION COPY | ROCHMENT | Resource Manager

ONLY IF COLQUR STAMPED ON

1
TIANTR
OL SHEET. Resource Manager Release I Specification

EU ROTH ERM E| DOCUMENT NUMBER SHT.

@ Copyright 1991 Eurotherm Limited HP024105 9

IERT M

[

VAR_DUTPUT
outl: BOOL;
END_VAR

then the following vref

VAR REFERENCE
ref:local;
END_VAR

ref"ref := ’Hemeote:prog.remli’;

would match the ini, in2 and outt parameters, and would enable data to be exchanged via those parameters.
Of course by instantiating a local instance of remote all of its visible parameters may be matched.

It is also possible to specify a list of remote objects that are to be matched to a local block, by using a special
syntax in the reference string. Fully hierarchic names can be put in a comma separated lists, or as a shorthand
“{? and ’}” are used fo bracket comma separated lists of names which are then all taken to be relative to the
previous hierarchic name. For example the string

a{b,x.e,£{j,%,1{m,n}}7}

expands to the names

a.b, a.x.e, a.f.i, a.£.k, a.f.1.m, a.f.1.n

A local parameter must be assigned to each name in the resulting expanded list, for example
a{ loci := b, ¢ { loc2 :=4d, loc3 := e}}

means that the local parameter locl is maiched to a.b, lec2 to a.c.d and loc3 to a.c. 8.

The full syntax of the reference string is

ref_string ::= simple_ref_string | complex_ref_string

simple_ref_string ::= [resource_name] ':’ name { ’.’ name }
complex_ref_string ::= [resource_name] ’':' [primary_name]

‘{!? alternate_names_list ‘}’
alternate names_list ::= alternate_names { , alternate_names_list }

alternate_names ::= [hierarchic_mame] ‘{’alternate_names_list *}’ |
final_name

final_name ::= lécal_parameter_name ':=? hierarchic_name
CONTROLLED DISTRIBUTION COPY | ROCUMENT 1 posource Manager
ONLY IF COLOUR STAMPED ON |
R OL SHEET. Resource Manager Release 1 Specification

EUROTHERM EI DOCUMENT NUMBER SHT.

© Copyright 1991 Eurotherm Limited HPro24105 10

primary_name ::= name { ’.7 name }

hierarchic_name ::= name { ’.’ name
local_parameter_name ::= name
resource_name ::= nRame

The primary_name is the name relative to which all the following list of names is specified. If absent the
following list of names is taken relative to the remote Hesource as a whole, (i.e the list of names must
contain the full path to the object). The { and ¥ notation brackets a comma separated list of hierarchic
names. Any name may itseif contain a list of sub-objects using the { and }notation. At the bottom level the
local_parametsy_name specifies the parameter of the local vref that is to be matched to the remote name.
Any parameters of the local vref that are not explicitly assigned remote objects are maiched to parameters of

the same name in the primary_name; if the latter is absent this is an error.

Duplicate local_parameter_names are not allowed, but duplicate remote names are, so it is possible te match
one remote variable to two or more local variables.

For example

VAR REFERENCE
RP : RemPID;
END_VAR
RemPID"ref := 'Ri:a{ Sp := b,c{ Pv := d, Op := e}’

means that R1:a.b must match RP.Sp, R1:a.¢.d must match RP.Pv and Ri:a.c.e must match RP,Op. If RP
has an extra parameter X then it is matched to Ri.a.X.

4.1.2 Reading the remote information

When a reference string is assigned to a vref, the Resource will work out the names of the remote objects it
needs to match to the local, and send (in one message) these to the remote Resource. Various errors may then
occur. These may be found by examining the vref’s status property, for example

IF ref status > 1 THEN
(* an error of some sort *)
END_IF

The errors associated with matching are

+ A syntax or other error in the reference string

s The remote Resource is not reachable.

+ One or more of the remote objects do not exist.

¢ The remote objects are owned by more than one task, and so cannot be made into one reference.

¢ The remote objects do not match the local ones according to the rules specified above.

CONTROLLED DISTRIBUTION COPY | ROCUMENT | posoyrce Manager
ONLY IF COLOUR STAMPED ON

~NTR 1
k O SHEET. Resource Manager Release 1 Specification

EU ROTHERM El DOCUMENT NUMBER SHT.

© Copyright 1991 Eurotherm Limited EP024105 11

EifEE-183

£

T

4,1.3 Reading and writing remete data

Once a reference has been matched to the remote objects, data may be read. The scan property sets the scan
rate in milli seconds for the remote data. For example

ref“scan := t#10;

sets the scan rate for the reference ref to be once every 10 milliseconds This means that every 10 milliseconds
the Resource will send a read message to the remote Resource specified in the reference string to read all of
the remote data. When the reply comes back the local image of the remote data is updated. A scan rate of
zero means no reads are performed.

If, however, no reply is received by the time the next scan is due, no timeout occurs, and no message ig=resent.
(Timeouts are handled separately with a separate global value) . Thus specifying a very fast scan time means
that the data will be read as fast as possible, being limited by the rate at which the remote task responds and
the local task sends messages.

A scan is performed on each task cycle where ‘“Time now > Time of last scan + Scan time’ (a scan time of
0 = oo). Therefore to perform a single-shot read, the scan time should be changed from 0 to a value < the
task cycle time and then reset to 0 on the next task cycle.

A property called currscan can be used to read the last set scan rate.
For function blocks all data is read (i.e all matched outputs, inputs and in-outs) and placed in the local vref.
Accessing the data of the vref from ST always returns the last data read.

A write to the remote object is triggered by either assigning to it (if it is a simple variable} or calling it (if it is
a block) passing it input parameters as usual. A write message is generated, unless a write message is already
outstanding. In this case a flag is set to indicate that another write is required when the previous write is
acknowledged. Tn this way the latest local value is always written to the remote object. Note that writes can
only occur at the rate at which the remote task acknowledges them.

If the vref is a simple variable or array all the local data is sent (even if only part of an array has been written).

If the vref is a function block the inputs and in-outs of the block are sent. Note that the in-outs are not
then read back, so the value assigned to the local in-out will be the value written and will not reflect any
modifications made by the remote block.

CONTROLLED DISTRIBUTION COPY EEO\?%%%NT Resource Manager
ONLY IF COLOUR STAMPED ON :
TIANTR
OL SHEET. Resource Manager Release 1 Specification

EU ROTHERM E' DOCUMENT NUMBER SHT.

© Copyright 1991 Eurotherm Limited HP024185 12

=

4.1.4 Messaging and task buffers

Tasks in & Resource communicate by exchanging messages. Each task has a configurable number of buffers of
different sizes for messaging. Bach task has a queue (a linked list) of free buffers, and of incoming messages.
When a message is sent the smallest available buffer that will contain a message is chosen to send it. The
message is delivered by linking the message buffer from the sending task into the input list for the remote
task. When the remote task reads the message the buffer is freed and put back on the free list of the buffer
owner (the sending task).

Messages to remote Resources, however, are routed to a “router” task. This task is responsible for finding the
route to the remote Resource.

Tn fact the above is an over-simplification. One node on the network can be single Resource running tasks
on more than one processor in a card. If the node does not support a large enough shared memory region
between the processors to hold the Resource database then the database is duplicated on each card and router
tasks on each processor route messages between the cards as well as to whatever network medium any card

supports.

A task may run out of buffers if it is trying to send too many messages, ot if the recelving task is not freeing
buffers because it is stopped, dead or in error. The configurer should try to allocate Hesources so that this
does not happen. Various tools are available for determining the number of buffers used by tasks and error
conditions. (See section 6 and 8}

All messages apart from a read template are sent to a particular task on a particular Resource. A read
template message is just sent to any task on the remote Resource, since any task can interrogate the Resource
database. Messages not routed to a particular task (but oanly to a particular Resource) are handled by the
first task to receive the message, which will be the router for an inter-resource message.

Reads and writes from a task to itself (i.e when there is a vref to objects in the same task as the vref} are
handled directly without messaging. Similarly a read teraplate request that specifies no remote Resource is
handled immediately by the task issuing it.

4.1.5 Examining the state of a vref

The status property of type DINT is available to determine the current state of a vref. The status properiy
has the values and meaning shown in the following table — -

ST RN B

DOCUMENT

CONTROLLED DISTRIBUTION COPY | RiviSion Resource Manager
ONLY IF COLOUR STAMPED ON .
TONTR
OL SHEET. Resource Manager Release 1 Specification

EUROTHERM EI DOCUMENT NUMBER SHT.

© Copyright 1991 Eurotherm Limited HP024105 i3

State

Value

Meaning

CK
InProgress
ParseFail

ResolveFail

NoResources

TemplateMismatch

Unreachable
BadStatus

NonUniqueOwner

SystemError

[-

Last operation succeeded
Read, write or read template in progress
A reference string had the wreng syntax

Local names in the reference string did
not matck o the local object, or were
duplicated

The task has no buffers left to send mes-
sages with, or the expanded reference
string is too long

The read template did not match the focal
one

The router was not reachable

Either a read template specified non ex-
istent objects, or read failed to read the
data at the remote end (though the mes-
sage arrived), or a write failed to write
(for example if some block outputs were
heing written)

In a read template the remote objects be-
long to more than one remote task

This should not be seen, if seen there is a
internal error in the Resource

4.1.6 Timeouts and failures

All read, write and read-template operations have built in timeouts, controlled by environment variables for
cell 2.5. Later on for cell 2.6 task inputs will be provided for this.

On a timeout the Resource will automatically try to re-read the template of the remote objects again. This
is to ensure consistency if the timeout was because a remote Resource was reloaded.

Tn addition each message contains a checksum for the remote Resource. This is stored in the local vref, and if
a read or write returns with a different checksum %o the local one then the remote Resource has been reloaded
between the read or write. Again the remote template will be re-read.

The automatic re-read of templates in these circumstances means that a timeout is not visible to the user via
the status property, so two other properties are available to examine the success of read or write messages.
These are readstatus and sritestatus ST DINTs. These both have the following states

State Value | Meaning

OK 0 Last operation succeeded

InProgress | 1 Read, write in progress

Failed 2 The last read or write failed

Undefined | 3 No read or write issued with this ref string

DOCUMENT
CONTROLLED DISTRIBUTION COPY | REVISION

ONLY IF COLOUR STAMPED ON
TONTROL SHEET.

1

Resource Manager

EUROTHERM

© Copyright 1991 Eurctherm Limited

El

Resource Manager Release 1 Specification

DOCUMENT NUMBER
HP024105

SHT.

14

T B

comeE

Reads and writes are essentially asynchronous. To simulate synchronous operations a Sequential Function
Chart may be used, which tests the read/write statusina transition to determine when an operation completed.

A synchronous write may be performed by writing the remote data in & step and transitioning cub of the step
when the vref has 0K writestatus.

A synchronous read may be performed by sefting the scan property from 0 to a positive large value in a step
{so that only one read will be done), transitioning out of the step when readstatus is DK, and setting the
scan property to zero.

Normally, once a template has been matched successfuily, there should not be communications errors. Function
blocks will be available whose outputs will give information on errors and the state of the various communi-
cations interfaces, (see section 8.1).

4.1.7 Summary of Properties

The following table summaries the properties that a vref has.

Property ST Type | Mode Meaning

ref STRING | Input Specifies the object(s) referred to (section
4.1.1)

status DINT Qutput | Monitor any errors using a vref (section
£.1.5)

writestatus | DINT Output | Monitor success or failure of the last write
operation (section 4.1.5}

readstatus | DINT Output | Monitor success or failure of the last read
operation (section 4.1.5)

curref STRING | Qutput | The current reference string (section 4.1.1
)

scan TIME Input Used to set the scan rate (section 4.1.3)

currscan TIME Qutput | The current scan rate (section 4.1.3)

5 Resources and Tasks

The Structured Text language has been extended according to the IEC6S specification for Resource syntax.
A program declaration is no longer the top level object in a Production QOrchestrator configuration. The

following syntax is used to specify a Resource name, and a set of tasks and programs. (Itemsin ' * are literal
strings)
resource ::= 'RESOURCE’ resource_name ‘0N’ resource_type_name

H

task_configuration_list ’;
block_configuratiom_list *;’
*END_RESOURCE’

task_configuration_list ::= task_configuration { ?;* task_configuration }
task_configuration ::= 'TASK’ task_name [task_inputs]
CONTROLLED DISTRIBUTION COPY | ROSUMENT 1 Resource Manager
ONLY IF COLOUR STAMPED ON .
TONTR
OL SHEET. Resource Manager Release 1 Specification

EUROTHERM

@® Copyright 1991 Furotherm Limited

EP024105

E' DOCUMENT NUMBER SHT.

15

BT B

P —

{ *ON’ processor_name]
task_inputs ::= ’(* task_input, { task_input } ’)’
task_input ::= task.im 7:=’ constant_value

block_configuration list ::=
block_contiguration { *;’ block_configuratien }

block_configuration ::= *PROGRANM?
program_instance_name [input_assignments 1 wITH?
task_name ‘:’ program_type_name

input_assignments ::= '{’ input_zssignment { , input_assigument ¥ oy]
input_assignment ::= program_input ':=’ constant_value
where

s Tesource_name, task_name, program_instance_name are valid ST identifiers

e program_input is an input to the previously compiled program of type program_type_name

o task_inisone of the predefined task inputs, which depends on the processor_name and resource_type_name
® constant_valﬁe is a valid ST constant, and matches the type of the program_input or task_in

¢ task_name in block_cenfiguration is the name of a previously declared task

e processor_name is an implementation dependent string denoting which processor the task will run on
for a multi-processor Resource

s Tesource_type_name is an implementation dependent string denoting which target hardware the Re-
source will run on

e 'WITH’ task_name specifies the task that will execute the program when it is activated.

{see sections § and 10 for details of supported processor_name and resource_type_name and corresponding
task_inputs)

Note that inter-program wiring will be supported in future releases.

A Resource declaration is compiled by the ST compiler as usual. The Resource database is then loaded. At
load time each task is assigned a unique number, or task id. Loading the Resource database and running it
depends on the target hardware. For the first release of the Resource manager this 15 described in sections §
and 10.

CONTROLLED DISTRIBUTION COPY | DOCUMENT 4 Resource Manager
ONLY IF COLOUR STAMPED ON 1
TONTR
OL SHEET. Resource Manager Release 1 Specification

EUROTHERM EI DOCUMENT NUMBER SHT.

® Copyright 1991 Furotherm Limited HP024105 16

R RS

E

- EETTr

6 Networks and network setup

Resources may be connected together by 2 networks, either UDP over ethernet or EILIN. Production Or-
chestrators may support either UDP or UDP and EILIN, if a Computrol card is fitted. (UDP is a protocol
commeoanly found on Unix that runs on ethernet.)

Where a Resource runs on more than one {closely bound) processor, there will be a communications medium
between the different processors. This medium (or network) is closed and only connects the routers of that
Resource. Initially the only instance of this will be the DMA interface between a 386 unix host and a Computrol
card — this can be seen as an intra-resource network of 2 nodes.

Each network is independent of the other, indeed the architecture allows many other networks to be added
later. Fach Resource has one or more routers in it. Each Resource could potentially be a node on many
networks. For every network connected to a Resource there will be a router task in the Resource. There may
be additonal routers for internal routing between local processors.)

6.1 UDP

The UDP network is a connectionless peer-to-peer network, where a peer is any unix router supporting UDP.
In addition there must exist somewhere on the ethernet a single copy of the UDP name server. The server
exists to retain the Internet addresses of all routers and to broadcast all changes to all routers.

To start up the UDP name server
udp_server [’-p’ port_number] ['~f’ file_name]

The optional file name may be used to specify a different file for holding the last known addresses of Resources,
defzult is *peers.udp’.

When the unix router is started the following switches must be supplied
‘-m! 'UDP’ server_hostname [port_number]

The default port number is 6000, for both udp server and router.

6.2 EILIN

The EILIN network is a peer-to-peer network, where a peer (or node) is any router supporting EILIN. Each
Resource sets up a connection to all Resources that it communicates with.

When the Computrol router is loaded the following switches nrust be supplied
-m ’EILIN’ node_number

The EILIN node number must unique within the EILIN network.

CONTROLLED DISTRIBUTION COPY | ROSUMENT 1 Recource Manager
ONLY IF COLOUR STAMPED ON ;
~
NIROL SHEET. Resource Manager Release 1 Specification

EUROTHERM

@ Copyright 1931 Eurotherm Limited

El

DOCUMENT NUMBER
HP024105

SHT.
17

CUERT TET ERE

TE T

= s e

-l

6.3 Network Bridging

With more than one network medium (e.g ethernet and EILIN) it is possible to have a network of Resources
where there is no common network medium between certain pairs of Resources, (i.e one could be only on
ethernet and one on EILIN). In these circumstances it is necessary to bridge between the different network
media. This is achieved at a Resource supporting both media (i.e on EILIN and on ethernet).

It is necessary to inform the originating router of another Resource’s router which is capable of acting for the
originating router to reach the destination Resource. This router is said to act as a proxy for the originating
router. So, in order to set up network bridges it is necessary to set up some router(s) to use other routers as
proxies. This is achieved by sending a router rmessage to the originating routers, these messages may originate
from anywhere in the network.

Each router has a list of Resources where another router is capable of acting as a proxy for each Resource not
directly reachable on the media supported by the originating Resource. All routers will always act as proxy {
route on) any message not for itself if at all possible.

In order to send these router messages the tool ‘RouMsg’ should be used, this tool sends router messages to
specified destination routers and prints out their replies.

For exarmnple if Resource Resl supports UDP, Res? supports EILIN and Res3 supports UDP and EILIN. Then
Resl wants Res3 to act as proxy for Res2 and Res2 want Res3 to act as proxy for Resl.

The ‘RoulMsg’ script to set up this exampie would be

Resi:Router ReqSetProxy Res2 Res3
Res2:Router ReqSetProxy Resl Res3

In this exampie this script could be issued from either ‘Resl’ or ‘Resd’, or if the commands were issued in the
opposite order then from either ‘Res2’ or ‘Resd’. A proxy message cannot be sent to a Resource unless a path
to that Hesource already exists.

7 Tools

The Resource tools may be used to monitor the messaging of a Resource, and for unloading tasks and Resources.

The tools all run under unix.

CONTROLLED DISTRIBUTION COPY | Roviane? | Resource Manager
ONLY IF COLOUR STAMPED ON
~NTROL SHEET.

1

Resource Manager Release 1 Specification

EU ROTH ERM EI DOCUMENT NUMBER SHT.

© Copyright 1991 Eurotherm Limited HP024105 18

FTTERE

Y

HEEFYT

7.1 Task .and loaders

On unix the output of the build of a Resource is two programs, one cailed ‘task’ and one called ‘loader’. The
loader will load the Resource definition into unix shared memory. The task program will run a specified ST
task. The command are run as

loader [—s <database size in bytes>]
task <task name> —-i <buffer spec>

where buffer spec is a string that may be used to specify the message buffer distribution for the task. It
kas the format

buffer_spec ::= number_of_buffers °‘:’ size { buffer_spec ¥
for example

"10:1024 10:2048"

specifies 10 buffers of size 1024 bytes and 10 of size 2048 bytes.

Tn cell 2.6 this way of specifying task buffers will be replaced by using a task function block.

The unload program unloads a task from a Resource, or unloads a whole Resource. A task that crashes must
be unloaded before it can be run again (or the whole Resource must be reloaded). Unload is run as

unload [resource | task <task name>]

Note an unloaded task that is run again will reuse its old buffers, and ignore any buffer spec supplied.

7.2 CmsEars
The Resource messaging systemn is known as CMS (Communication Messaging Services). Various utilities are
provided for monitoring the state of messages and task buffers.

The CmsFEars tools dynamically monitors the state of the CMS for a Resource. The tool reporis summary
information on the usage of buffers, statistics as well as static information about loaded tasks.

7.3 CmsSpy

The CmsSpy tool allows detailed inspection of the CMS data for a particular task. CmsSpy is primarily
designed as a post-mortem tool, if used on a currently executing task it does not guarantee the consistency of
the information. CmsSpy allows individual task buffers to be inspected.

CmsSpy has optional switches which may be applied on startup, where they change defaults or to an individual

command }ine in which case they only affect the output from that command. These are

¢ -b’ print all of the buffer
¢ ’-f’ <format> print each byte in <format>, default

s 7z’ count up, but do not print trailing zeros in a buffer

IR

L)

HEE Y

CONTROLLED DISTRIBUTION COPY | DOGUMENT | Resource Manager
ONLY IF COLOUR STAMPED ON 1
oy
NTROL SHEET. Resource Manager Release 1 Specification

E U R O T H E R M E I DOCUMENT NUMBER SHT.

© Copyright 1991 Eurotherm Limited HP024105 1%

7.4 RouMsg

The RouMsg tool allows router messages to be sent to a Resource router and the results printed cut. Router
messages are ONLY understood by routers. RouMsg reads single lines from stdin until BEOF and executes
each line. Each line is of the form

destination message_type [args for message_type]
The full set of message types and optional arguments are

RegListMedia List 2ll media supported by this Resource.

ReqListResources List all Resources reachable from this Resource, and the media on which they ate reach-
able.

ReqListProxies List all proxies known at this Resource.
ReqgSetProxy <Resource> <Proxy> Use <Proxy> as proxy for the resource <Resource>
ReqCmsStatus List the buffer distribation of the router.

ReqMediumStatus <Medium> Report the status of this medium and the number of messages both sent
and received on this medium.

RouMsg must send messages as a Resource task, it therefore uses a task slot, but no task slot is allocated for
it; it will not be a permanent feature of the Resource as its primary use is to set up proxies on a Resource that
needs them. Therefore RouMsg uses a task slot currently not being used, which cannot be the router slot.

RouMsg accepts the following switches

"-¢’, Echo all commands, default is no echo.

[]

i <InitData>’, CMS buffer distribution.
o .t <TaskName>’, name of task whose slot to use, default "DefaultTask’.

e -w <Seconds>’, $ime out an response from router, defauit 10 seconds.

8 Debugging facilities

8.1 The Resource Debugger

The debugger is a task that can be rur on any Production Orchestrator in the network. It works by connecting
to tasks on other Resources (or on the local Production Orchestrator) and sending them debug messages, to
which they respond. It is run as a stand-alone program in an xterm or terminal of a unix machine running
the Resource.

There are two levels of debugging, “user level” and “resource level”. The latter is used for debugging the
Resource Manager code and as such is outside the scope of this document.

Commands available at the user level are -

SN E

TR Y

CONTROLLED DISTRIBUTION COPY | REGMENT | Resource Manager
ONLY IF¥ COLOUR STAMPED ON ;
~ t\{"l‘]z
R OL SHEET, Resource Manager Release 1 Specification

EUROTHERM EI DOCUMENT NUMBER SHT.

@© Copyright 1981 Eurotherm Limited HP024105 20

!

help_command ::= ‘help’ | 'help’ command. nams

help on its own prints out brief help on all available commands. help with a command_name prints out more
detailed information on that command.

connect_command ::= ‘commnect’ '™’ [resource_name] ’':’ task_name ’"’ !
'eonnect’ *"? [resource_name] '’ task _numbex

which connects the debugger to the specified Resource and task. If the Resource name 18 not specified the
Jocal Resource is used.

The debugger may be connected to many tasks. The last task connected is the one that receives any commands
typed in, but debug output may be received from any previously connected task. '

1t is possible to connect the debugger to itself to debug the local Resource.

disconnect_command ::= ‘disconpect’ '*’ [resource_name 1 ":? task_name %
‘disconnact’ %' [resource_name] ' tagk pumber

This disconnects the debugger from the specified task.

ping_command ::= ’ping’ ’"' [resource name] ’:’ task name ’'’ i
'ping’ ’"’ [rescurce_name] ’"’ task_number

can be used to find whether the specified Resource and task exists on the network. A ping message is sent
and if the destination is found a ping acknowledge message is returned.

whatis_command ::= ’Whatis’ hierarchic_name ! 'ghatis’ hierarchic_name
§ ’Whatis’ iy [’whatis’ FAEE D

The whatis command prints out information on the specified hierarchic name which is any valid 5T name.
1t prints out the type of the name and array dimensions if found, or an error message if the name is not found
by the task the debugger sent the message to (i.e in the Resource the debugger is connected to). Note the
name rust be the name of a variable or block instanced in the Resource, not the name of a type of block. The
capitalised form prints out the names, types, modes and dimensions of all the children if the object referred
to is a block, otherwise just the number of children is printed and the biock type name, The "" formis a
shorthand for the currently connected Resource name.

print_command ::= ’print’ hierarchic_name

If the referred to object is found and has a single simple value (i.e is not a block or array) the current value
is printed. (Array elements may be accessed using the usual [J notation).

sat_command ::= ’set’ hierarchic_name ’'=’ constant_value |
'get? " hierarchic_nams "' =’ constant_value

CONTROLLED DISTRIBUTION COPY | DOCHMENT | Resource Manager
ONLY IF COLOUR STAMPED ON

q
RBSOUICG Ma.[lagel‘ Release 1 SpeCIﬁcat!OH

EU ROTH ERM EI DOCUMENT NUMBER SHT.

(® Copyright 1991 Eurotherm Limited HP024105 21

nEEE o -

-

attempts to set the specified name to the specified constant vaiue. If the name is an object of simple type
{i.e not an array or block) and the type maltches that of the value, that value is written, and the previous
value returned, otherwise an error message is returned. constant_valus is any valid literal ST value. (Array
elements may be accessed using the usual [J notation}.

break_command ::= ’break’ [‘entry’ | ’exit’ | ‘either’]’

['task’ | hierarchic_name]

sets a break point. Execution of the connected task is suspended when the break point is reached. The break
point is set at entry, exit or either of execution of the specified function block instance or of the whole task if
task’ is used. The function block must have been compiled with the debug option on the ST compiler.

One of *entry’, ’'exit’, or’ 'either’, must be present, One of ’task’ or hierarchic_name must be.present.
Y t 3 bl 3 p

; # &‘%ﬁp 803 M A @ agh

5 beal @ ST Lie apgad

continue_command ::= ‘continue’

continues execution from a break poist.

delete command ::= ’'delete’ ’ [’entry’ | ‘exit’ | ’either’]~

['task’ | hierarchic_name]
| delete 'all’

deletes the specified break point or all break points.
ref_command ::= ’ref’ ref_name '=’ reference _string

sets up a reference tagged by name ref_rame to a set of objects. The reference_string is an expandable
string of the same form as the ref property of vrefs, except that no local names can be specified (because
there is no local block to match to!) and that no Resource specification may be supplied because the debugger
sends all messages to the connected Resource and task.

The debugger sends a read template message to the connected task, and if the objects all exist then the set of
specified objects can then be read and written as a group. There is no requirement that the objects belong to
any particular task ~— the task that the debugger is connected to will do reads or writes regardless of which

task owns the objects.
read_command ::= ’Tead’ ref_name

reads the objects in a previously set up reference ref_name. A read message is sent to the connected task.
The list command can be used to see the last values read (see below).

store_command ::= ’store’ ref_name '.’' element_no '=1 conatant_value
| *store’ ref_name ’.’' element_no '[’ index ’1? =) constant_value

stores a value in the element number element_no of the local image of the reference ref name. The index
is used for references that are arrays (multi-dimensional arrays are flattened into single dimensional arrays as
specified in section 4.1.1).

CONTROLLED DISTRIBUTION COPY | DOGHMENT) Resource Manager
ONLY IF COLOUR STAMPED ON)
R OL SHEET. Resource Manager Release 1 Specification

EU ROTHERM El DOCUMENT NUMBER SHT.

@ Copyright 1591 Eurotherm Limited HP024105 22

TR

S TR

write _command ::® °‘write’ ref_name

writes the values stored in the local image of ref vef_name to the actual objects referenced. Note no checks
are made on whether outputs of blocks are being written.

unref_ command ::= ’unref’ ref_name

deletes a previously defined reference with name ref_name.

exercise command ::= ’exarcise’ times [’'read’ | ’write’ 1 'ref_name’

will read or write the specified reference times times, and report on the number of seconds taken.
define_command ::= ‘define’ macro ’'=° 'mi gubstitute M7

defines the siring macro as a shorthand for substitute, which can be any siring at all. (Typically this is used
to abbreviate commands or long ST names).

undefins_command ::= ‘undefine’ "' macro M’

undefines a previously defined macro.

TR cE

ey

list_command ::= ‘liat’
[*breaks’ | ‘refs’ | ’‘ref’ ref_name | 'macros’]

lists current break points, or defined references, or the values and types of reference re?_name, or currently
defined macros.

redirection_command ::= ’transcribe’ name | ’transcribe'’ '"’mame’’’
copies ail commands types to the named file.

output_command ::= '>’ name | ’>7

writes all debug output to the file name; if name is absent debug output is reset to the terminal.
input_command ::= <’ name | '<’

means all debug commands are read from the file name; if name is absent debug input is reset to the terminal.

The redirection commands may be useful for loading in pre-defined macros save in a file, and also for setting
up regression tests. Two other commands are also useful for regression testing —

sleep_command ::= ’wait’ time | 'pause’ time

which cause the debugger to pause for the specific number of seconds. wait causes a sleep once only, whereas
panse makes the debugger sleep between every command. pause O resets the debugger not to sleep between
commands.)

Finally the command quit exits the debugger.

CONTROLLED DISTRIBUTION COPY | DUCHMENT 1 Resource Manager
ONLY IF COLOUR STAMPED ON

~NTIR
L OL SHEET. Resource Manager Release 1 Specification

EU ROTHERM EI DOCUMENT NUMBER SHT.

© Copyright 1991 Eurotherm Limited HP024105 23

1

8.2 Error monitoring blocks

There will be a function block provided which will cutput diagnostic statistics about all the Var References
in a task. Its outputs are counters of errors thab have occurred in vrefs.

The function block will consist of counts of events (possibly fleeting) that are visible from ST and others
which are not.

The function block (Figure 8.1) will be of the form :

Inputs :

CutputMode Change the mode of the outputs. Valid modes are :

¢ Display running total
1 Display running total since last ZeroRelative

2 Display total in lasi completed CountPeriod
ZeroAbsolute Set all values to zero. This has a global effect on all instances of this block.
ZeroRelative For mode 1, outpuis are now differences from now.

CountPeriod Period for mode 2.
Qutputs :

Requests Number of requests issued

ReqMatch Number of read template requests issued
RegRead Number of read requests issued

ReqWrite Number of write requests issued
Responses Number of successfui responses received

ResMatch Number of read template-responses received
ResRead Number of read responses received

ResWrite Number of write responses received
State errors Number of times a VarRef fails into an errored state.

MatchFrror Number of times a vref falls into a error state after a read template.
ReadError Number of times vref falls into error state after a read.

WriteError Number of times vref falls into an error state after a write.
Timeouts Request timeouts

MatchTimeout Number of times a read template has not received a response in the timeout period.
ReadTimeout Number of times a read has not received a response in the timeout period.

WriteTimeout Number of times a write has not received a response in the timeout period.

Operation errors Var Ref operation errors. These are errors that prevent the request actuaily being sent.

OpInProgress Current operation still in progress on a vref when another operation was requested

BadState Vref was in the wrong state to perform the requested operation.

THTRENET L ET

e

© | CONTROLLED DISTRIBUTION COPY | ROCUMENT | Recource Manager
ONLY IF COLOUR STAMPED ON 1
“IINTR
OL SHEET. Resource Manager Release 1 Specification

| EUROTHERM EI DOCUMENT NUMBER SHT.

© Copyright 1991 Eurotherm Limited HPO24105 24

OOTFull The Outstanding Operation Table {OOT) was full, and therefore the request was rejected.
Fach request requires z free entry in an internal table, the OOT, until the response is received or

the request terminates in an error or timeout.
NoBuffers No CMS buffers were available for the request.
ParseFail Syntax error in ref string, (The number of occurences of the status ParseFail).
ResolveFail Error in contents of ref string. (The number of occurences of the status ResolveFail).

Status errors { Section 4.1.5 }

Mismatch Template mismatch. (The number of occurences of the status TemplateMismatch).
Unreachable Router is unreachable. { The number of occurences of the status Unreachable)
BadStatus Status not OK in a received message. { The number of occurences of the status BadStatus

).
ManyOwners A vref resolves to items held owned by different tasks. { The number of occurences of
the status NonUniqueOwner).

System errors (Should not happen }.

SystemBrror { The number of occurences of the status SystemError).
Some status’s are not included because they may be implied from others. These are :

Ok This is 1 -+ ResMatch 4+ ResRead + ResWrite

InProgress This is a fleeting condition that occurs once a request is issued. This is ReqMatch + ReqRead
+ ReqWrite

NoResources This is NoBuffers + OOTTail.
For every request that is issued one of the following will resuit :

e A valid response.
e An operation error. The request has not been sent.
« A timeout. No response was received to a request.

A state error 4 status error. A response was received but the response actions were not completed due
{0 an error.

L]

A state error - system error

Therefore :

Completed Requests = Requests - Uncompleted Requests
Completed Reguests = Responses + Operation Errors + State Errors + Timeouts
State Errors = Status Errors + System Errors

1

Uncompleted requests consist of :

o A single outstanding request per VarRef
» Requests aborted by changing the VarRef Ref string.

If any of the request counters exceeds , then the counter will be globally reset, as if the input ZeroAbsolute
has been triggered.

CONTROLLED DISTRIBUTION COPY | DOCHMENT | Resource Manager
ONLY IF COLOUR STAMPED ON .
ONTROL SHEET. Resource Manager Release 1 Specification

EUROTHERM EI DOCUMENT NUMBER SHT.

(© Copyright 1991 Eurotherm Limited HP024105 25

TET TR

R

USINT—>
EDGE-~—>]
EDGE~—>
TIME~—>

VarRel[Diag
QOutputMode RegMatch
ReqRead
ReqWrite
ResMatch
ResRead
ResWrite
MatchError
ReadFError
WriteError
MatchTimeout
ReadTimeout

ZeroRelative
ZeroA bsolute
CountPeriod

WriteTlmeout
OplInProgress
BadState
OOTFull
NoBuffers
ParseFail
ResolveFail
Mismatch
Unreachable
BadStatus
ManyOwners

SystemError

-~—>DINT
——>DINT
——>>DINT
———>DINT
——>DINT
—>DINT
—>DINT
2> DINT
—>DINT
———>DINT
-——>DINT
——>>DINT
——>DINT
——>DINT
——>DINT
——>DINT
--—>DINT
—>DINT
———>DINT
——>DINT
——>DINT
—>DINT
——>DINT

Figure 3.1 Var References Diagnostics

CONTROLLED DISTRIBUTION COPY
ONLY IF COLOUR STAMPED ON
“ANTROL SHEET.

EUROTHERM

© Copyright 1991 Eurctherm Limited

EEO\%[‘S?%QNT Resource Manager
1
Resource Manager Release 1 Specification
E | DOCUMENT NUMBER SHT.
HP024105 26

TR L

S ERET

9 Features for PO 2.5

Production Orchestrator version 2.5 will support the vref construct as specified in section 4.1.

Only one task and one program associated with it will be supported. The user will have a default non-editable
Resource specification (section 3) of the form

RESGURCE <conf_name> ON c¢ell

TASK umix;

PROGRAM <conf_name> p WITH uanix : <conf_name>
END_RESCURCE _ L=

where <conf name> is the name of the cell configuration. Starting the cell will be equivalent to starting the
task unizx.

Cell to cell communication is only available using ethernet and udp, (see section 8).

The debugger wiil be a stand-alone unix program provided with the cell.

Use of the Resource will be enabled by setiing the configuration option RESQURCE fo YES.

10 Features for PO 2.6

Production Orchestrator version 2.6 will support a fully editable Resource specification see section 5.

Only one task can be run on the unix host, and will be denoted by the processor name Unix386. Other tasks
may be run on a Computrol card, and will be denoted by the processor name Comp88k, provided the memory
limitations of the Computrol card are not exceeded.

The task on the unix host will have no built in task inputs.

The tasks on the computrol card will have the same set of inputs and outputs as specified for the PC3000
tasking system (see [2]), and will run with the same execution semantics.

t Both ethernet-udp, and EILIN communication will be available.
It is a requirement that any function blocks developed in the EILIN project (see document [1]) shall run in

this envizonment.

o (o e—

om0 e

S

BT

CONTROLLED DISTRIBUTION COPY | ROGran=rl | Resource Manager
ONLY IF COLOUR STAMPED ON 1
ANTR
OL SHEET. Resource Manager Release 1 Specification

EUROTHERM | g| [ocommome

© Copyright 1991 Eurotherm Limited ; HP024105 27

